Suppr超能文献

图像识别技术在血液涂片病理诊断中的应用。

Application of image recognition technology in pathological diagnosis of blood smears.

作者信息

Cheng Wangxinjun, Liu Jingshuang, Wang Chaofeng, Jiang Ruiyin, Jiang Mei, Kong Fancong

机构信息

Center of Hematology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China.

Queen Mary College, Nanchang University, Nanchang, 330006, China.

出版信息

Clin Exp Med. 2024 Aug 6;24(1):181. doi: 10.1007/s10238-024-01379-z.

Abstract

Traditional manual blood smear diagnosis methods are time-consuming and prone to errors, often relying heavily on the experience of clinical laboratory analysts for accuracy. As breakthroughs in key technologies such as neural networks and deep learning continue to drive digital transformation in the medical field, image recognition technology is increasingly being leveraged to enhance existing medical processes. In recent years, advancements in computer technology have led to improved efficiency in the identification of blood cells in blood smears through the use of image recognition technology. This paper provides a comprehensive summary of the methods and steps involved in utilizing image recognition algorithms for diagnosing diseases in blood smears, with a focus on malaria and leukemia. Furthermore, it offers a forward-looking research direction for the development of a comprehensive blood cell pathological detection system.

摘要

传统的手工血涂片诊断方法既耗时又容易出错,其准确性往往严重依赖临床实验室分析人员的经验。随着神经网络和深度学习等关键技术的突破不断推动医疗领域的数字化转型,图像识别技术越来越多地被用于改进现有的医疗流程。近年来,计算机技术的进步使得通过使用图像识别技术提高了血涂片血细胞识别的效率。本文全面总结了利用图像识别算法诊断血涂片疾病(重点是疟疾和白血病)所涉及的方法和步骤。此外,还为全面的血细胞病理检测系统的开发提供了前瞻性的研究方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a4f/11303489/89f77f5fa719/10238_2024_1379_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验