Biogeomagnetism Group, Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, People's Republic of China. France-China International Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing 100029, People's Republic of China. Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 100029, People's Republic of China.
Nanotechnology. 2020 Nov 27;31(48):485709. doi: 10.1088/1361-6528/abb15d.
Protein-based nanoparticles have developed rapidly in areas such as drug delivery, biomedical imaging and biocatalysis. Ferritin possesses unique properties that make it attractive as a potential platform for a variety of nanobiotechnological applications. Here we synthesized magnetoferritin (P-MHFn) nanoparticles for the first time by using the human H chain of ferritin that was expressed by Pichia pastoris (P-HFn). Western blot results showed that recombinant P-HFn was successfully expressed after methanol induction. Transmission electron microscopy (TEM) showed the spherical cage-like shape and monodispersion of P-HFn. The synthesized magnetoferritin (P-MHFn) retained the properties of magnetoferritin nanoparticles synthesized using HFn expressed by E. coli (E-MHFn): superparamagnetism under ambient conditions and peroxidase-like activity. It is stable under a wider range of pH values (from 5.0 to 11.0), likely due to post-translational modifications such as N-glycosylation on P-HFn. In vivo near-infrared fluorescence imaging experiments revealed that P-MHFn nanoparticles can accumulate in tumors, which suggests that P-MHFn could be used in tumor imaging and therapy. An acute toxicity study of P-MHFn in Sprague Dawley rats showed no abnormalities at a dose up to 20 mg Fe Kg body weight. Therefore, this study shed light on the development of magnetoferritin nanoparticles using therapeutic HFn expressed by Pichia pastoris for biomedical applications.
基于蛋白质的纳米颗粒在药物输送、生物医学成像和生物催化等领域迅速发展。铁蛋白具有独特的性质,使其成为各种纳米生物技术应用的有吸引力的潜在平台。在这里,我们首次通过表达毕赤酵母(P-HFn)的人 H 链合成了磁铁蛋白(P-MHFn)纳米颗粒。Western blot 结果表明,甲醇诱导后成功表达了重组 P-HFn。透射电子显微镜(TEM)显示 P-HFn 的球形笼状形状和单分散性。合成的磁铁蛋白(P-MHFn)保留了使用大肠杆菌表达的 HFn 合成的磁铁蛋白纳米颗粒(E-MHFn)的特性:在环境条件下具有超顺磁性和过氧化物酶样活性。它在更宽的 pH 值范围内(从 5.0 到 11.0)稳定,可能是由于 P-HFn 上的翻译后修饰,如 N-糖基化。体内近红外荧光成像实验表明,P-MHFn 纳米颗粒可以在肿瘤中积累,这表明 P-MHFn 可用于肿瘤成像和治疗。在 Sprague Dawley 大鼠中进行的 P-MHFn 急性毒性研究表明,在高达 20 mg Fe Kg 体重的剂量下没有异常。因此,这项研究为使用毕赤酵母表达的治疗性 HFn 开发用于生物医学应用的磁铁蛋白纳米颗粒提供了启示。