Cardiovascular Institute and Department of Medicine, Stanford University, Stanford, CA 94305, USA; Graduate School of Biomedical Sciences, Sanford Burnham Prebys Medical Discovery Institute, San Diego, CA 92037, USA.
Cardiovascular Institute and Department of Medicine, Stanford University, Stanford, CA 94305, USA.
Cell Stem Cell. 2020 Nov 5;27(5):813-821.e6. doi: 10.1016/j.stem.2020.08.003. Epub 2020 Sep 14.
Modeling cardiac disorders with human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes is a new paradigm for preclinical testing of candidate therapeutics. However, disease-relevant physiological assays can be complex, and the use of hiPSC-cardiomyocyte models of congenital disease phenotypes for guiding large-scale screening and medicinal chemistry have not been shown. We report chemical refinement of the antiarrhythmic drug mexiletine via high-throughput screening of hiPSC-CMs derived from patients with the cardiac rhythm disorder long QT syndrome 3 (LQT3) carrying SCN5A sodium channel variants. Using iterative cycles of medicinal chemistry synthesis and testing, we identified drug analogs with increased potency and selectivity for inhibiting late sodium current across a panel of 7 LQT3 sodium channel variants and suppressing arrhythmic activity across multiple genetic and pharmacological hiPSC-CM models of LQT3 with diverse backgrounds. These mexiletine analogs can be exploited as mechanistic probes and for clinical development.
使用人诱导多能干细胞(hiPSC)衍生的心肌细胞来模拟心脏疾病是候选治疗药物进行临床前测试的新范例。然而,与疾病相关的生理检测可能很复杂,并且尚未显示使用先天性疾病表型的 hiPSC-心肌细胞模型来指导大规模筛选和药物化学。我们报告了通过高通量筛选来自患有长 QT 综合征 3(LQT3)的患者的 hiPSC-CMs,对抗心律失常药物美西律进行化学改良,这些患者携带 SCN5A 钠通道变体。通过药物化学合成和测试的迭代循环,我们确定了药物类似物,它们在抑制多种 LQT3 钠通道变体的晚期钠电流方面具有更高的效力和选择性,并抑制了具有不同背景的多种遗传和药理学 hiPSC-CM 模型中的心律失常活性。这些美西律类似物可用作机制探针和临床开发。