Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute Harvard University Cambridge MA USA.
Department of Cardiology Boston Children's Hospital Boston MA USA.
J Am Heart Assoc. 2024 Jul 2;13(13):e033155. doi: 10.1161/JAHA.123.033155. Epub 2024 Jun 27.
Current protocols generate highly pure human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) in vitro that recapitulate characteristics of mature in vivo cardiomyocytes. Yet, a risk of arrhythmias exists when hiPSC-CMs are injected into large animal models. Thus, understanding hiPSC-CM maturational mechanisms is crucial for clinical translation. Forkhead box (FOX) transcription factors regulate postnatal cardiomyocyte maturation through a balance between FOXO and FOXM1. We also previously demonstrated that p53 activation enhances hiPSC-CM maturation. Here, we investigate whether p53 activation modulates the FOXO/FOXM1 balance to promote hiPSC-CM maturation in 3-dimensional suspension culture.
Three-dimensional cultures of hiPSC-CMs were treated with Nutlin-3a (p53 activator, 10 μM), LOM612 (FOXO relocator, 5 μM), AS1842856 (FOXO inhibitor, 1 μM), or RCM-1 (FOXM1 inhibitor, 1 μM), starting 2 days after onset of beating, with dimethyl sulfoxide (0.2% vehicle) as control. P53 activation promoted hiPSC-CM metabolic and electrophysiological maturation alongside FOXO upregulation and FOXM1 downregulation, in n=3 to 6 per group for all assays. FOXO inhibition significantly decreased expression of cardiac-specific markers such as TNNT2. In contrast, FOXO activation or FOXM1 inhibition promoted maturational characteristics such as increased contractility, oxygen consumption, and voltage peak maximum upstroke velocity, in n=3 to 6 per group for all assays. Further, by single-cell RNA sequencing of n=2 LOM612-treated cells compared with dimethyl sulfoxide, LOM612-mediated FOXO activation promoted expression of cardiac maturational pathways.
We show that p53 activation promotes FOXO and suppresses FOXM1 during 3-dimensional hiPSC-CM maturation. These results expand our understanding of hiPSC-CM maturational mechanisms in a clinically-relevant 3-dimensional culture system.
目前的方案在体外生成高度纯化的人诱导多能干细胞衍生的心肌细胞(hiPSC-CMs),这些细胞再现了成熟体内心肌细胞的特征。然而,当 hiPSC-CMs 被注射到大动物模型中时,存在心律失常的风险。因此,了解 hiPSC-CM 的成熟机制对于临床转化至关重要。叉头框(FOX)转录因子通过 FOXO 和 FOXM1 之间的平衡来调节出生后心肌细胞的成熟。我们之前还证明,p53 激活可增强 hiPSC-CM 的成熟。在这里,我们研究了 p53 激活是否通过调节 FOXO/FOXM1 平衡来促进 3 维悬浮培养中的 hiPSC-CM 成熟。
在 hiPSC-CM 出现搏动后第 2 天,用 Nutlin-3a(p53 激活剂,10 μM)、LOM612(FOXO 重定位剂,5 μM)、AS1842856(FOXO 抑制剂,1 μM)或 RCM-1(FOXM1 抑制剂,1 μM)处理 3 维 hiPSC-CM 培养物,以二甲基亚砜(0.2%载体)作为对照。p53 激活促进 hiPSC-CM 的代谢和电生理成熟,同时上调 FOXO 并下调 FOXM1,n=3 至 6 组,每组用于所有测定。FOXO 抑制显著降低了心脏特异性标志物如 TNNT2 的表达。相反,FOXO 激活或 FOXM1 抑制促进了成熟特征,如增加收缩力、耗氧量和电压峰值最大上升速度,n=3 至 6 组,每组用于所有测定。此外,通过 n=2 个 LOM612 处理的细胞与二甲基亚砜的单细胞 RNA 测序,LOM612 介导的 FOXO 激活促进了心脏成熟途径的表达。
我们表明,p53 激活在 3 维 hiPSC-CM 成熟过程中促进 FOXO 的表达并抑制 FOXM1 的表达。这些结果扩展了我们对临床相关 3 维培养系统中 hiPSC-CM 成熟机制的理解。