Suppr超能文献

光遗传学和生物传感器为代谢性遗传工程学奠定了基础。

Optogenetics and biosensors set the stage for metabolic cybergenetics.

机构信息

Department of Chemical and Biological Engineering, Princeton University, Princeton NJ 08544, United States.

Department of Molecular Biology, Princeton University, Princeton NJ 08544, United States.

出版信息

Curr Opin Biotechnol. 2020 Oct;65:296-309. doi: 10.1016/j.copbio.2020.07.012. Epub 2020 Sep 12.

Abstract

Cybergenetic systems use computer interfaces to enable feed-back controls over biological processes in real time. The complex and dynamic nature of cellular metabolism makes cybergenetics attractive for controlling engineered metabolic pathways in microbial fermentations. Cybergenetics would not only create new avenues of research into cellular metabolism, it would also enable unprecedented strategies for pathway optimization and bioreactor operation and automation. Implementation of metabolic cybergenetics, however, will require new capabilities from actuators, biosensors, and control algorithms. The recent application of optogenetics in metabolic engineering, the expanding role of genetically encoded biosensors in strain development, and continued progress in control algorithms for biological processes suggest that this technology will become available in the not so distant future.

摘要

生物遗传控制系统利用计算机接口实时控制生物过程的反馈。细胞代谢的复杂性和动态性使得生物遗传控制在微生物发酵中控制工程代谢途径具有吸引力。生物遗传控制不仅为细胞代谢的研究开辟了新途径,而且还为途径优化以及生物反应器操作和自动化提供了前所未有的策略。然而,代谢生物遗传控制的实施将需要执行器、生物传感器和控制算法的新功能。光遗传学在代谢工程中的最新应用、遗传编码生物传感器在菌株开发中的作用不断扩大,以及生物过程控制算法的持续进展表明,这项技术将在不远的将来得到应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验