Institute of Analytical Chemistry, Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria.
FFoQSI - Austrian Competence Centre for Feed and Food Quality, Safety & Innovation, Technopark 1C, 3430 Tulln, Austria.
Food Chem. 2021 Feb 15;338:127924. doi: 10.1016/j.foodchem.2020.127924. Epub 2020 Aug 27.
An exploratory study for verifying regional geographical origin of carrots from specific production regions in Austria ("Genussregionen") was performed by combining chemical fingerprinting methods, namely n(Sr)/n(Sr) isotope amount ratios, multi-elemental and metabolomic pattern. Chemometric classification models were built on individual and combined datasets using (data-driven) soft independent modelling of class analogies and (orthogonal) projections to latent structures-discriminant analysis to characterise and differentiate carrots grown in five regions in Austria. A predictive ability of 97% or better (depending on the classification technique) was obtained using combined Sr isotope amount ratios and multi-elemental data. The use of data fusion strategies, in particular the mid-level option (fusion of selected variables from the different analytical platforms), allowed highly efficient (99-100%, except soft independent modelling of class analogy with 97%) and correct classification of carrot samples.
对来自奥地利特定生产地区(“美食产区”)的胡萝卜进行了区域地理起源的探索性研究,方法是结合化学指纹图谱方法,即 n(Sr)/n(Sr)同位素丰度比、多元素和代谢组学图谱。使用(数据驱动的)类相似软独立建模和(正交)潜在结构判别分析,对生长在奥地利五个地区的胡萝卜的个体和组合数据集构建了化学计量分类模型。使用 Sr 同位素丰度比和多元素数据的组合,获得了 97%或更高的预测能力(取决于分类技术)。使用数据融合策略,特别是中级选项(来自不同分析平台的选定变量的融合),可以高效(99-100%,除了类相似软独立建模为 97%)且正确地对胡萝卜样品进行分类。