Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA.
Department of Biological Engineering, David H. Koch Institute for Integrative Cancer Research and Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, MA.
Ann Surg. 2020 Oct;272(4):604-610. doi: 10.1097/SLA.0000000000004379.
Sepsis and sterile both release "danger signals' that induce the systemic inflammatory response syndrome (SIRS). So differentiating infection from SIRS can be challenging. Precision diagnostic assays could limit unnecessary antibiotic use, improving outcomes.
After surveying human leukocyte cytokine production responses to sterile damage-associated molecular patterns (DAMPs), bacterial pathogen-associated molecular patterns, and bacteria we created a multiplex assay for 31 cytokines. We then studied plasma from patients with bacteremia, septic shock, "severe sepsis," or trauma (ISS ≥15 with circulating DAMPs) as well as controls. Infections were adjudicated based on post-hospitalization review. Plasma was studied in infection and injury using univariate and multivariate means to determine how such multiplex assays could best distinguish infective from noninfective SIRS.
Infected patients had high plasma interleukin (IL)-6, IL-1α, and triggering receptor expressed on myeloid cells-1 (TREM-1) compared to controls [false discovery rates (FDR) <0.01, <0.01, <0.0001]. Conversely, injury suppressed many mediators including MDC (FDR <0.0001), TREM-1 (FDR <0.001), IP-10 (FDR <0.01), MCP-3 (FDR <0.05), FLT3L (FDR <0.05), Tweak, (FDR <0.05), GRO-α (FDR <0.05), and ENA-78 (FDR <0.05). In univariate studies, analyte overlap between clinical groups prevented clinical relevance. Multivariate models discriminated injury and infection much better, with the 2-group random-forest model classifying 11/11 injury and 28/29 infection patients correctly in out-of-bag validation.
Circulating cytokines in traumatic SIRS differ markedly from those in health or sepsis. Variability limits the accuracy of single-mediator assays but machine learning based on multiplexed plasma assays revealed distinct patterns in sepsis- and injury-related SIRS. Defining biomarker release patterns that distinguish specific SIRS populations might allow decreased antibiotic use in those clinical situations. Large prospective studies are needed to validate and operationalize this approach.
脓毒症和无菌性炎症都会释放“危险信号”,引发全身炎症反应综合征(SIRS)。因此,区分感染和 SIRS 具有一定挑战性。精准诊断检测方法可限制不必要的抗生素使用,改善预后。
在调查了人白细胞细胞因子对无菌损伤相关分子模式(DAMP)、细菌病原体相关分子模式和细菌的反应后,我们创建了一个用于 31 种细胞因子的多重检测方法。然后,我们研究了菌血症、感染性休克、“严重脓毒症”或创伤患者(ISS≥15 且循环 DAMPs)以及对照组的血浆。感染是根据住院后审查确定的。使用单变量和多变量方法在感染和损伤中研究血浆,以确定此类多重检测方法如何最好地区分感染性和非感染性 SIRS。
与对照组相比,感染患者的血浆白细胞介素(IL)-6、IL-1α 和髓系细胞触发受体 1(TREM-1)水平较高[错误发现率(FDR)<0.01,<0.01,<0.0001]。相反,损伤抑制了许多介质,包括 MDC(FDR<0.0001)、TREM-1(FDR<0.001)、IP-10(FDR<0.01)、MCP-3(FDR<0.05)、FLT3L(FDR<0.05)、Tweak(FDR<0.05)、GRO-α(FDR<0.05)和 ENA-78(FDR<0.05)。在单变量研究中,临床组之间分析物的重叠使得临床相关性难以确定。多变量模型可以更好地区分损伤和感染,2 组随机森林模型在袋外验证中正确分类了 11/11 例损伤和 28/29 例感染患者。
创伤性 SIRS 中的循环细胞因子与健康或脓毒症中的细胞因子明显不同。变异性限制了单介质检测方法的准确性,但基于多相血浆检测的机器学习揭示了脓毒症和损伤相关 SIRS 中存在明显的模式。定义区分特定 SIRS 人群的生物标志物释放模式可能有助于在这些临床情况下减少抗生素的使用。需要进行大型前瞻性研究来验证和实施这种方法。