Lamping Florian, Jack Thomas, Rübsamen Nicole, Sasse Michael, Beerbaum Philipp, Mikolajczyk Rafael T, Boehne Martin, Karch André
Department of Epidemiology, Research Group Epidemiological and Statistical Methods (ESME), Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany.
Department for Pediatric Cardiology and Intensive Care Medicine, Hannover Medical School, 30625, Hannover, Germany.
BMC Pediatr. 2018 Mar 15;18(1):112. doi: 10.1186/s12887-018-1082-2.
Since early antimicrobial therapy is mandatory in septic patients, immediate diagnosis and distinction from non-infectious SIRS is essential but hampered by the similarity of symptoms between both entities. We aimed to develop a diagnostic model for differentiation of sepsis and non-infectious SIRS in critically ill children based on routinely available parameters (baseline characteristics, clinical/laboratory parameters, technical/medical support).
This is a secondary analysis of a randomized controlled trial conducted at a German tertiary-care pediatric intensive care unit (PICU). Two hundred thirty-eight cases of non-infectious SIRS and 58 cases of sepsis (as defined by IPSCC criteria) were included. We applied a Random Forest approach to identify the best set of predictors out of 44 variables measured at the day of onset of the disease. The developed diagnostic model was validated in a temporal split-sample approach.
A model including four clinical (length of PICU stay until onset of non-infectious SIRS/sepsis, central line, core temperature, number of non-infectious SIRS/sepsis episodes prior to diagnosis) and four laboratory parameters (interleukin-6, platelet count, procalcitonin, CRP) was identified in the training dataset. Validation in the test dataset revealed an AUC of 0.78 (95% CI: 0.70-0.87). Our model was superior to previously proposed biomarkers such as CRP, interleukin-6, procalcitonin or a combination of CRP and procalcitonin (maximum AUC = 0.63; 95% CI: 0.52-0.74). When aiming at a complete identification of sepsis cases (100%; 95% CI: 87-100%), 28% (95% CI: 20-38%) of non-infectious SIRS cases were assorted correctly.
Our approach allows early recognition of sepsis with an accuracy superior to previously described biomarkers, and could potentially reduce antibiotic use by 30% in non-infectious SIRS cases. External validation studies are necessary to confirm the generalizability of our approach across populations and treatment practices.
ClinicalTrials.gov number: NCT00209768; registration date: September 21, 2005.
由于脓毒症患者必须尽早进行抗菌治疗,因此立即诊断并区分其与非感染性全身炎症反应综合征(SIRS)至关重要,但这两种情况症状相似,给诊断带来了困难。我们旨在基于常规可用参数(基线特征、临床/实验室参数、技术/医疗支持)开发一种诊断模型,用于区分危重症儿童的脓毒症和非感染性SIRS。
这是对在德国一家三级儿科重症监护病房(PICU)进行的一项随机对照试验的二次分析。纳入了238例非感染性SIRS病例和58例脓毒症病例(根据IPSCC标准定义)。我们应用随机森林方法从疾病发作当天测量的44个变量中识别出最佳预测指标集。所开发的诊断模型采用时间分割样本方法进行验证。
在训练数据集中确定了一个包含四个临床参数(至非感染性SIRS/脓毒症发作时的PICU住院时长、中心静脉导管、核心体温、诊断前非感染性SIRS/脓毒症发作次数)和四个实验室参数(白细胞介素-6、血小板计数、降钙素原、CRP)的模型。在测试数据集中进行验证,结果显示曲线下面积(AUC)为0.78(95%置信区间:0.70 - 0.87)。我们的模型优于先前提出的生物标志物,如CRP、白细胞介素-6、降钙素原或CRP与降钙素原的组合(最大AUC = 0.63;95%置信区间:0.52 - 0.74)。当旨在完全识别脓毒症病例(100%;95%置信区间:87 - 100%)时,28%(95%置信区间:20 - 38%)的非感染性SIRS病例被正确分类。
我们的方法能够早期识别脓毒症,准确性优于先前描述的生物标志物,并且在非感染性SIRS病例中可能使抗生素使用减少30%。需要进行外部验证研究以确认我们的方法在不同人群和治疗实践中的通用性。
ClinicalTrials.gov编号:NCT00209768;注册日期:2005年9月21日。