Suppr超能文献

网络医学分析乳腺癌表型的新模式。

The New Paradigm of Network Medicine to Analyze Breast Cancer Phenotypes.

机构信息

IRCCS SDN, Via Emanuele Gianturco 113, 80143 Naples, Italy.

Institute for Systems Analysis and Computer Science "Antonio Ruberti", National Research Council, 00185 Rome, Italy.

出版信息

Int J Mol Sci. 2020 Sep 12;21(18):6690. doi: 10.3390/ijms21186690.

Abstract

Breast cancer (BC) is a heterogeneous and complex disease as witnessed by the existence of different subtypes and clinical characteristics that poses significant challenges in disease management. The complexity of this tumor may rely on the highly interconnected nature of the various biological processes as stated by the new paradigm of Network Medicine. We explored The Cancer Genome Atlas (TCGA)-BRCA data set, by applying the network-based algorithm named SWItch Miner, and mapping the findings on the human interactome to capture the molecular interconnections associated with the disease modules. To characterize BC phenotypes, we constructed protein-protein interaction modules based on "hub genes", called switch genes, both common and specific to the four tumor subtypes. Transcriptomic profiles of patients were stratified according to both clinical (immunohistochemistry) and genetic (PAM50) classifications. 266 and 372 switch genes were identified from immunohistochemistry and PAM50 classifications, respectively. Moreover, the identified switch genes were functionally characterized to select an interconnected pathway of disease genes. By intersecting the common switch genes of the two classifications, we selected a unique signature of 28 disease genes that were BC subtype-independent and classification subtype-independent. Data were validated both in vitro (10 BC cell lines) and ex vivo (66 BC tissues) experiments. Results showed that four of these hub proteins (AURKA, CDC45, ESPL1, and RAD54L) were over-expressed in all tumor subtypes. Moreover, the inhibition of one of the identified switch genes (AURKA) similarly affected all BC subtypes. In conclusion, using a network-based approach, we identified a common BC disease module which might reflect its pathological signature, suggesting a new vision to face with the disease heterogeneity.

摘要

乳腺癌(BC)是一种异质性和复杂性疾病,不同的亚型和临床特征存在显著挑战,这对疾病管理提出了重大挑战。这种肿瘤的复杂性可能依赖于各种生物过程的高度互联性质,正如网络医学的新范式所指出的那样。我们通过应用名为 SWItch Miner 的基于网络的算法,探索了癌症基因组图谱(TCGA)-BRCA 数据集,并将这些发现映射到人类相互作用组上,以捕捉与疾病模块相关的分子相互关系。为了描述乳腺癌表型,我们根据“枢纽基因”(称为开关基因)构建了基于蛋白质-蛋白质相互作用模块,这些基因对于四种肿瘤亚型都是常见的和特定的。根据临床(免疫组织化学)和遗传(PAM50)分类,对患者的转录组谱进行分层。从免疫组织化学和 PAM50 分类中分别鉴定出 266 和 372 个开关基因。此外,对鉴定出的开关基因进行了功能特征分析,以选择疾病基因的相互连接途径。通过交叉两种分类的常见开关基因,我们选择了一个独特的 28 个疾病基因的特征,这些基因与乳腺癌亚型无关,也与分类亚型无关。数据在体外(10 种乳腺癌细胞系)和离体(66 种乳腺癌组织)实验中得到了验证。结果表明,这四个枢纽蛋白(AURKA、CDC45、ESPL1 和 RAD54L)在所有肿瘤亚型中均过度表达。此外,鉴定出的一个开关基因(AURKA)的抑制作用同样影响所有乳腺癌亚型。总之,我们使用基于网络的方法,鉴定出一个共同的乳腺癌疾病模块,这可能反映了其病理特征,为应对疾病异质性提供了新的视角。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e880/7555916/f8bd015e3f87/ijms-21-06690-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验