Department of Mathematics & Statistics, Texas Tech University, Lubbock, TX, USA.
Eco-Evolutionary Mathematics, CNRS UMR 8197, Ecole Normale Supérieure, Paris, France.
Trends Ecol Evol. 2020 Dec;35(12):1090-1099. doi: 10.1016/j.tree.2020.08.006. Epub 2020 Sep 12.
Understanding ecological processes and predicting long-term dynamics are ongoing challenges in ecology. To address these challenges, we suggest an approach combining mathematical analyses and Bayesian hierarchical statistical modeling with diverse data sources. Novel mathematical analysis of ecological dynamics permits a process-based understanding of conditions under which systems approach equilibrium, experience large oscillations, or persist in transient states. This understanding is improved by combining ecological models with empirical observations from a variety of sources. Bayesian hierarchical models explicitly couple process-based models and data, yielding probabilistic quantification of model parameters, system characteristics, and associated uncertainties. We outline relevant tools from dynamical analysis and hierarchical modeling and argue for their integration, demonstrating the value of this synthetic approach through a simple predator-prey example.
理解生态过程和预测长期动态是生态学中持续存在的挑战。为了解决这些挑战,我们建议采用一种方法,将数学分析和贝叶斯层次统计建模与多种数据源相结合。对生态动态进行新颖的数学分析,可以使我们基于过程的理解系统在何种条件下接近平衡、经历大的振荡或在瞬态状态下持续。通过将生态模型与来自各种来源的经验观察相结合,可以提高这种理解。贝叶斯层次模型明确地将基于过程的模型和数据联系起来,对模型参数、系统特征和相关不确定性进行概率量化。我们概述了动力分析和层次建模的相关工具,并论证了它们的整合,通过一个简单的捕食者-被捕食者的例子展示了这种综合方法的价值。