Groome Patti Ann, McBride Mary L, Jiang Li, Kendell Cynthia, Decker Kathleen M, Grunfeld Eva, Krzyzanowska Monika K, Winget Marcy
Division of Cancer Care and Epidemiology, Cancer Research Institute, Queen's University, Kingston, Ontario Canada.
Cancer Control Research, BC Cancer Agency, Vancouver, British Columbia, Canada.
Int J Popul Data Sci. 2018 Nov 12;3(3):440. doi: 10.23889/ijpds.v3i3.440.
Cancer care is complex and exists within the broader healthcare system. The CanIMPACT team sought to enhance primary cancer care capacity and improve integration between primary and cancer specialist care, focusing on breast cancer. In Canada, all medically-necessary healthcare is publicly funded but overseen at the provincial/territorial level. The CanIMPACT Administrative Health Data Group's (AHDG) role was to describe inter-sectoral care across five Canadian provinces: British Columbia, Alberta, Manitoba, Ontario and Nova Scotia. This paper describes the process used and challenges faced in creating four parallel administrative health datasets. We present the content of those datasets and population characteristics. We provide guidance for future research based on 'lessons learned'. The AHDG conducted population-based comparisons of care for breast cancer patients diagnosed from 2007-2011. We created parallel provincial datasets using knowledge from data inventories, our previous work, and ongoing bi-weekly conference calls. Common dataset creation plans (DCPs) ensured data comparability and documentation of data differences. In general, the process had to be flexible and iterative as our understanding of the data and needs of the broader team evolved. Inter-sectoral data inconsistencies that we had to address occurred due to differences in: 1) healthcare systems, 2) data sources, 3) data elements and 4) variable definitions. Our parallel provincial datasets describe the breast cancer diagnostic, treatment and survivorship phases and address ten research objectives. Breast cancer patient demographics reflect inter-provincial general population differences. Across provinces, disease characteristics are similar but underlying health status and use of healthcare services differ. Describing healthcare across Canadian jurisdictions assesses whether our provincial healthcare systems are delivering similar high quality, timely, accessible care to all of our citizens. We have provided a description of our experience in trying to achieve this goal and, for future use, we include a list of 'lessons learned' and a list of recommended steps for conducting this kind of work.
The conduct of inter-sectoral research using linked administrative health data requires a committed team that is adequately resourced and has a set of clear, feasible objectives at the start.Guiding principles include: maximization of sectoral participation by including single-jurisdiction expertise and making the most inclusive data decisions; use of living documents that track all data decisions and careful consideration about data quality and availability differences.Inter-sectoral research requires a good understanding of the local healthcare system and other contextual issues for appropriate interpretation of observed differences.
癌症护理十分复杂,且存在于更广泛的医疗保健系统之中。CanIMPACT团队致力于提高原发性癌症护理能力,并改善原发性护理与癌症专科护理之间的整合,重点关注乳腺癌。在加拿大,所有必要的医疗保健均由公共资金资助,但由省级/地区级进行监管。CanIMPACT行政健康数据小组(AHDG)的职责是描述加拿大五个省份(不列颠哥伦比亚省、艾伯塔省、曼尼托巴省、安大略省和新斯科舍省)的跨部门护理情况。本文描述了创建四个并行行政健康数据集所采用的过程以及面临的挑战。我们展示了这些数据集的内容和人口特征。我们根据“经验教训”为未来的研究提供指导。AHDG对2007年至2011年诊断出的乳腺癌患者的护理情况进行了基于人群的比较。我们利用数据清单中的知识、我们之前的工作以及每两周一次的电话会议,创建了并行的省级数据集。通用数据集创建计划(DCP)确保了数据的可比性以及对数据差异的记录。总体而言,随着我们对数据和更广泛团队需求的理解不断发展,这个过程必须灵活且反复进行。我们必须解决的跨部门数据不一致情况是由以下差异导致的:1)医疗保健系统;2)数据源;3)数据元素;4)变量定义。我们的并行省级数据集描述了乳腺癌的诊断、治疗和生存阶段,并涉及十个研究目标。乳腺癌患者的人口统计学特征反映了各省之间一般人群的差异。在各省之间,疾病特征相似,但基础健康状况和医疗服务的使用情况有所不同。描述加拿大各司法管辖区的医疗保健情况,可评估我们的省级医疗保健系统是否为所有公民提供了类似的高质量、及时、可及的护理。我们描述了为实现这一目标所做的尝试,并为未来使用列出了“经验教训”清单以及开展此类工作的推荐步骤清单。
使用关联行政健康数据进行跨部门研究需要一个资源充足且目标明确、可行的坚定团队。指导原则包括:通过纳入单一司法管辖区的专业知识并做出最具包容性的数据决策,最大限度地提高部门参与度;使用跟踪所有数据决策的实时文档,并仔细考虑数据质量和可用性差异。跨部门研究需要对当地医疗保健系统和其他背景问题有充分了解,以便对观察到的差异进行适当解读。