Suppr超能文献

通过整合结构域信息,对线粒体和亚线粒体蛋白质进行蛋白质组范围的预测和注释。

Proteome-wide prediction and annotation of mitochondrial and sub-mitochondrial proteins by incorporating domain information.

机构信息

Department of Biophysics, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India.

Department of Biophysics, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India.

出版信息

Mitochondrion. 2018 Sep;42:11-22. doi: 10.1016/j.mito.2017.10.004. Epub 2017 Oct 12.

Abstract

Mitochondrion is one of the most important subcellular organelle of eukaryotic cells. It carries out several biochemical functions that are extremely vital for cells. Defects in mitochondria also play an important role in the development and progression of different types of cancer. Therefore knowledge of complete mitochondrial protein repertoire is essential to understand overall mitochondrial functionality, maintenance, dynamics and metabolism. It would be of a great practical significance to develop an automated and reliable approach that can identify the mitochondrial proteins and their sub-mitochondrial location. In the present study, we report a two level prediction method, named as SubMitoPred, which predicts mitochondrial proteins (at first level) and their sub-mitochondrial localization (at second level). Our approach is based on combined usage of Pfam domain information and support vector machine model. During training we achieved an overall prediction accuracy of 94.37% at first level while at the second level a prediction accuracy of 74.91% for inner membrane, 82.98% for outer membrane, 71.23% for inter-membrane space and 81.58% accuracy was achieved for matrix. Evaluation on independent data shows better performance of SubMitoPred. Benchmarking showed that SubMitoPred performed better than other existing methods. We also annotated human proteome using SubMitoPred. We also developed a freely accessible web-server as well as standalone software for the use of scientific community, which is available at http://proteininformatics.org/mkumar/submitopred/.

摘要

线粒体是真核细胞最重要的细胞器之一。它执行着几种对细胞极其重要的生化功能。线粒体缺陷也在不同类型癌症的发展和进展中起着重要作用。因此,了解完整的线粒体蛋白质组对于理解线粒体的整体功能、维持、动态和代谢是必不可少的。开发一种自动化和可靠的方法来识别线粒体蛋白质及其亚线粒体定位将具有重要的实际意义。在本研究中,我们报告了一种两级预测方法,称为 SubMitoPred,它可以预测线粒体蛋白质(一级)及其亚线粒体定位(二级)。我们的方法基于 Pfam 结构域信息和支持向量机模型的组合使用。在训练过程中,我们在一级达到了 94.37%的总体预测准确率,而在二级,内膜的预测准确率为 74.91%,外膜为 82.98%,膜间空间为 71.23%,基质为 81.58%。对独立数据的评估表明 SubMitoPred 的性能更好。基准测试表明,SubMitoPred 优于其他现有方法。我们还使用 SubMitoPred 对人类蛋白质组进行了注释。我们还开发了一个免费的网络服务器和一个独立的软件,供科学界使用,网址是 http://proteininformatics.org/mkumar/submitopred/。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验