Suppr超能文献

SignalP 5.0 使用深度神经网络改进了信号肽预测。

SignalP 5.0 improves signal peptide predictions using deep neural networks.

机构信息

Department of Bio and Health Informatics, Technical University of Denmark, Kgs Lyngby, Denmark.

Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.

出版信息

Nat Biotechnol. 2019 Apr;37(4):420-423. doi: 10.1038/s41587-019-0036-z. Epub 2019 Feb 18.

Abstract

Signal peptides (SPs) are short amino acid sequences in the amino terminus of many newly synthesized proteins that target proteins into, or across, membranes. Bioinformatic tools can predict SPs from amino acid sequences, but most cannot distinguish between various types of signal peptides. We present a deep neural network-based approach that improves SP prediction across all domains of life and distinguishes between three types of prokaryotic SPs.

摘要

信号肽(SPs)是许多新合成蛋白质氨基端的短氨基酸序列,可将蛋白质靶向到膜内或穿过膜。生物信息学工具可以从氨基酸序列中预测 SPs,但大多数工具无法区分各种类型的信号肽。我们提出了一种基于深度神经网络的方法,该方法可提高所有生命领域的 SP 预测能力,并区分三种原核 SP。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验