Suppr超能文献

建立 CT 引导下经胸肺活检术后咯血风险预测模型。

Development of a hemoptysis risk prediction model for patients following CT-guided transthoracic lung biopsy.

机构信息

Department of Respiratory Medicine, Jinhua Municipal Central Hospital, No. 365, East Renmin Road, Jinhua, 321000, Zhejiang Province, China.

Department of Nuclear Medicine, Jinhua Municipal Central Hospital, No. 365, East Renmin Road, Jinhua, 321000, Zhejiang Province, China.

出版信息

BMC Pulm Med. 2020 Sep 16;20(1):247. doi: 10.1186/s12890-020-01282-9.

Abstract

BACKGROUND

Computed tomography-guided transthoracic needle biopsy (CT-TNB) is a widely used method for diagnosis of lung diseases; however, CT-TNB-induced bleeding is usually unexpected and this complication can be life-threatening. The aim of this study was to develop and validate a predictive model for hemoptysis following CT-TNB.

METHODS

A total of 436 consecutive patients who underwent CT-TNB from June 2016 to December 2017 at a tertiary hospital in China were divided into derivation (n = 307) and validation (n = 129) cohorts. We used LASSO regression to reduce the data dimension, select variables and determine which predictors were entered into the model. Multivariate logistic regression was used to develop the predictive model. The discrimination capacity of the model was evaluated by the area under the receiver operating characteristic curve (AUROC), the calibration curve was used to test the goodness-of-fit of the model, and decision curve analysis was conducted to assess its clinical utility.

RESULTS

Five predictive factors (diagnosis of the lesion, lesion characteristics, lesion diameter, procedure time, and puncture distance) selected by LASSO regression analysis were applied to construct the predictive model. The AUC was 0.850 (95% confidence interval [CI], 0.808-0.893) in the derivation, and 0.767 (95% CI, 0.684-0.851) in the validation. The model showed good calibration consistency (p > 0.05). Moreover, decision curve analysis indicated its clinical usefulness.

CONCLUSION

We established a predictive model that incorporates lesion features and puncture parameters, which may facilitate the individualized preoperative prediction of hemoptysis following CT-TNB.

摘要

背景

计算机断层扫描引导经胸穿刺活检(CT-TNB)是一种广泛用于诊断肺部疾病的方法;然而,CT-TNB 引起的出血通常是意外的,这种并发症可能是致命的。本研究旨在开发和验证 CT-TNB 后咯血的预测模型。

方法

我们将 2016 年 6 月至 2017 年 12 月在中国一家三级医院接受 CT-TNB 的 436 例连续患者分为推导(n=307)和验证(n=129)队列。我们使用 LASSO 回归来降低数据维度,选择变量并确定哪些预测因子被纳入模型。使用多变量逻辑回归来开发预测模型。通过受试者工作特征曲线下面积(AUROC)评估模型的区分能力,使用校准曲线来测试模型的拟合优度,使用决策曲线分析来评估其临床实用性。

结果

LASSO 回归分析选择的五个预测因素(病变的诊断、病变特征、病变直径、手术时间和穿刺距离)用于构建预测模型。在推导中,AUC 为 0.850(95%置信区间 [CI],0.808-0.893),在验证中为 0.767(95% CI,0.684-0.851)。模型显示出良好的校准一致性(p>0.05)。此外,决策曲线分析表明其具有临床实用性。

结论

我们建立了一个预测模型,该模型包含病变特征和穿刺参数,这可能有助于在 CT-TNB 后个体化预测咯血。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0519/7496204/2e76b1f90fc3/12890_2020_1282_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验