Suppr超能文献

基于血清外泌体微生物组数据的脑肿瘤诊断模型和饮食效应。

Brain tumor diagnostic model and dietary effect based on extracellular vesicle microbiome data in serum.

机构信息

MD Healthcare R&D Institute, Seoul, Republic of Korea.

Department of Health and Safety Convergence Science Introduction, Korea University, Seoul, Republic of Korea.

出版信息

Exp Mol Med. 2020 Sep;52(9):1602-1613. doi: 10.1038/s12276-020-00501-x. Epub 2020 Sep 16.

Abstract

The human microbiome has been recently associated with human health and disease. Brain tumors (BTs) are a particularly difficult condition to directly link to the microbiome, as microorganisms cannot generally cross the blood-brain barrier (BBB). However, some nanosized extracellular vesicles (EVs) released from microorganisms can cross the BBB and enter the brain. Therefore, we conducted metagenomic analysis of microbial EVs in both serum (152 BT patients and 198 healthy controls (HC)) and brain tissue (5 BT patients and 5 HC) samples based on the V3-V4 regions of 16S rDNA. We then developed diagnostic models through logistic regression and machine learning algorithms using serum EV metagenomic data to assess the ability of various dietary supplements to reduce BT risk in vivo. Models incorporating the stepwise method and the linear discriminant analysis effect size (LEfSe) method yielded 12 and 29 significant genera as potential biomarkers, respectively. Models using the selected biomarkers yielded areas under the curves (AUCs) >0.93, and the model using machine learning resulted in an AUC of 0.99. In addition, Dialister and [Eubacterium] rectale were significantly lower in both blood and tissue samples of BT patients than in those of HCs. In vivo tests showed that BT risk was decreased through the addition of sorghum, brown rice oil, and garlic but conversely increased by the addition of bellflower and pear. In conclusion, serum EV metagenomics shows promise as a rich data source for highly accurate detection of BT risk, and several foods have potential for mitigating BT risk.

摘要

人类微生物组最近与人类健康和疾病有关。脑肿瘤(BTs)是一种特别难以直接与微生物组联系起来的疾病,因为微生物通常不能穿过血脑屏障(BBB)。然而,一些来自微生物的纳米级细胞外囊泡(EVs)可以穿过 BBB 并进入大脑。因此,我们基于 16S rDNA 的 V3-V4 区,对血清(152 名 BT 患者和 198 名健康对照(HC))和脑组织(5 名 BT 患者和 5 名 HC)样本中的微生物 EV 进行了宏基因组分析。然后,我们使用血清 EV 宏基因组数据通过逻辑回归和机器学习算法开发了诊断模型,以评估各种膳食补充剂在体内降低 BT 风险的能力。包含逐步法和线性判别分析效应大小(LEfSe)方法的模型分别产生了 12 个和 29 个显著属作为潜在的生物标志物。使用所选生物标志物的模型产生的曲线下面积(AUC)>0.93,而使用机器学习的模型产生的 AUC 为 0.99。此外,BT 患者的血液和组织样本中的 Dialister 和 [Eubacterium] rectale 明显低于 HC。体内试验表明,通过添加高粱、糙米油和大蒜可以降低 BT 风险,但相反,添加桔梗和梨会增加 BT 风险。总之,血清 EV 宏基因组学作为一种高度准确检测 BT 风险的丰富数据源具有很大的潜力,并且一些食物具有降低 BT 风险的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/925d/8080813/bbd9b30066fc/12276_2020_501_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验