Huh Yeon-Ju, Seo Joo-Young, Nam Jieun, Yang Jinho, McDowell Andrea, Kim Yoon-Keun, Lee Joo-Ho
LHK Bariatric and Metabolic Clinic, 218 Bongeunsa-ro, Seoul, Gangnam-gu, Republic of Korea.
Department of Surgery, Ewha Womans University College of Medicine, 1071 Anyangcheon-ro, Yangcheon-gu, Seoul, Republic of Korea.
Obes Surg. 2019 Aug;29(8):2470-2484. doi: 10.1007/s11695-019-03852-1.
Microbial ecology is reported to be an important regulator of energy homeostasis and glucose metabolism. Microbes secrete extracellular vesicles (EVs) during their proliferation and death to communicate with other cells. To investigate the roles of gut microbiota in glucose metabolism, we analyzed serial changes of gut microbe and microbial EV composition before and after bariatric/metabolic surgery (BMS).
Twenty-eight Wistar rats were fed on high-fat diet (HFD) to induce obesity and diabetes. Five of them compared with 5 rats fed on regular chow diet (RCD). Among the remaining 23 rats, Roux-en-Y gastric bypass (RYGB) (n = 10), sleeve gastrectomy (SG) (n = 10), or sham operation (n = 3) was randomly performed. Gut microbiota and EVs from fecal samples were analyzed by 16S rDNA amplicon sequencing.
The present study showed that microbial diversity was decreased in HFD-fed rats versus RCD-fed rats. In addition, BMS reversed glucose intolerance and microbial richness which were induced by HFD. In terms of microbiota and microbial EV composition, both RYGB and SG enhance the composition of phyla Proteobacteria, Verrucomicrobia, and their secreting EVs, but decrease phylum Firmicutes and its EVs. We tried to demonstrate specific genera showed a significant compositional difference in obesity/diabetes-induced rats compared with normal rats and then restored similarly toward normal rats' level after BMS. At the genus level, Lactococcus, Ruminococcus, Dorea in Firmicutes(p), Psychrobacter in Proteobacteria(p), and Akkermansia in Verrucomicrobia(p) fit these conditions after BMS.
We suggest that these genera are the candidates contributing to obesity and diabetes improvement mechanism after BMS.
据报道,微生物生态学是能量稳态和葡萄糖代谢的重要调节因子。微生物在增殖和死亡过程中分泌细胞外囊泡(EVs)以与其他细胞进行通讯。为了研究肠道微生物群在葡萄糖代谢中的作用,我们分析了减肥/代谢手术(BMS)前后肠道微生物和微生物EV组成的系列变化。
28只Wistar大鼠喂食高脂饮食(HFD)以诱导肥胖和糖尿病。其中5只与5只喂食常规饲料(RCD)的大鼠进行比较。在其余23只大鼠中,随机进行Roux-en-Y胃旁路术(RYGB)(n = 10)、袖状胃切除术(SG)(n = 10)或假手术(n = 3)。通过16S rDNA扩增子测序分析粪便样本中的肠道微生物群和EV。
本研究表明,与RCD喂养的大鼠相比,HFD喂养的大鼠微生物多样性降低。此外,BMS逆转了由HFD诱导的葡萄糖不耐受和微生物丰富度。在微生物群和微生物EV组成方面,RYGB和SG均增强了变形菌门、疣微菌门及其分泌EV的组成,但降低了厚壁菌门及其EV。我们试图证明,与正常大鼠相比,肥胖/糖尿病诱导大鼠中特定属的组成存在显著差异,然后在BMS后恢复到与正常大鼠水平相似。在属水平上,BMS后厚壁菌门中的乳酸球菌属、瘤胃球菌属、多雷亚属、变形菌门中的嗜冷杆菌属和疣微菌门中的阿克曼氏菌属符合这些条件。
我们认为这些属是BMS后肥胖和糖尿病改善机制的潜在贡献者。