Institute of Biochemical Engineering, University of Stuttgart, Stuttgart, Germany.
Biotechnol Bioeng. 2021 Jan;118(1):265-278. doi: 10.1002/bit.27568. Epub 2020 Oct 7.
Escherichia coli exposed to industrial-scale heterogeneous mixing conditions respond to external stress by initiating short-term metabolic and long-term strategic transcriptional programs. In native habitats, long-term strategies allow survival in severe stress but are of limited use in large bioreactors, where microenvironmental conditions may change right after said programs are started. Related on/off switching of genes causes additional ATP burden that may reduce the cellular capacity for producing the desired product. Here, we present an agent-based data-driven model linked to computational fluid dynamics, finally allowing to predict additional ATP needs of Escherichia coli K12 W3110 exposed to realistic large-scale bioreactor conditions. The complex model describes transcriptional up- and downregulation dynamics of about 600 genes starting from subminute range covering 28 h. The data-based approach was extracted from comprehensive scale-down experiments. Simulating mixing and mass transfer conditions in a 54 m stirred bioreactor, 120,000 E. coli cells were tracked while fluctuating between different zones of glucose availability. It was found that cellular ATP demands rise between 30% and 45% of growth decoupled maintenance needs, which may limit the production of ATP-intensive product formation accordingly. Furthermore, spatial analysis of individual cell transcriptional patterns reveal very heterogeneous gene amplifications with hot spots of 50%-80% messenger RNA upregulation in the upper region of the bioreactor. The phenomenon reflects the time-delayed regulatory response of the cells that propagate through the stirred tank. After 4.2 h, cells adapt to environmental changes but still have to bear an additional 6% ATP demand.
大肠杆菌暴露于工业规模的非均相混合条件下,通过启动短期代谢和长期战略转录程序来应对外部应激。在自然栖息地中,长期策略允许在严重压力下生存,但在大型生物反应器中用途有限,因为微环境条件可能在启动这些程序后立即发生变化。相关基因的开/关切换会导致额外的 ATP 负担,从而可能降低细胞生产所需产物的能力。在这里,我们提出了一个基于代理的、数据驱动的模型,该模型与计算流体动力学相关联,最终允许预测大肠杆菌 K12 W3110 在现实的大规模生物反应器条件下暴露时的额外 ATP 需求。该复杂模型描述了约 600 个基因的转录上调和下调动力学,从亚分钟范围开始,涵盖 28 小时。基于数据的方法是从全面的缩小规模实验中提取出来的。在 54 立方米搅拌式生物反应器中模拟混合和传质条件,120000 个大肠杆菌细胞在不同的葡萄糖供应区之间波动时被跟踪。结果发现,细胞的 ATP 需求增加了生长解耦维持需求的 30%到 45%之间,这可能会相应地限制 ATP 密集型产物形成的生产。此外,对单个细胞转录模式的空间分析显示,存在非常不均匀的基因扩增,生物反应器上部区域的信使 RNA 上调幅度达到 50%到 80%。这种现象反映了细胞的时间延迟调节反应,这些反应通过搅拌罐传播。4.2 小时后,细胞适应了环境变化,但仍需承担额外的 6%的 ATP 需求。