Suppr超能文献

耦合代谢-水动力模型可实现工业生物工艺的合理放大。

Coupled metabolic-hydrodynamic modeling enabling rational scale-up of industrial bioprocesses.

机构信息

State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China.

Transport Phenomena, Chemical Engineering Department, Delft University of Technology, Delft, The Netherlands.

出版信息

Biotechnol Bioeng. 2020 Mar;117(3):844-867. doi: 10.1002/bit.27243. Epub 2019 Dec 20.

Abstract

Metabolomics aims to address what and how regulatory mechanisms are coordinated to achieve flux optimality, different metabolic objectives as well as appropriate adaptations to dynamic nutrient availability. Recent decades have witnessed that the integration of metabolomics and fluxomics within the goal of synthetic biology has arrived at generating the desired bioproducts with improved bioconversion efficiency. Absolute metabolite quantification by isotope dilution mass spectrometry represents a functional readout of cellular biochemistry and contributes to the establishment of metabolic (structured) models required in systems metabolic engineering. In industrial practices, population heterogeneity arising from fluctuating nutrient availability frequently leads to performance losses, that is reduced commercial metrics (titer, rate, and yield). Hence, the development of more stable producers and more predictable bioprocesses can benefit from a quantitative understanding of spatial and temporal cell-to-cell heterogeneity within industrial bioprocesses. Quantitative metabolomics analysis and metabolic modeling applied in computational fluid dynamics (CFD)-assisted scale-down simulators that mimic industrial heterogeneity such as fluctuations in nutrients, dissolved gases, and other stresses can procure informative clues for coping with issues during bioprocessing scale-up. In previous studies, only limited insights into the hydrodynamic conditions inside the industrial-scale bioreactor have been obtained, which makes case-by-case scale-up far from straightforward. Tracking the flow paths of cells circulating in large-scale bioreactors is a highly valuable tool for evaluating cellular performance in production tanks. The "lifelines" or "trajectories" of cells in industrial-scale bioreactors can be captured using Euler-Lagrange CFD simulation. This novel methodology can be further coupled with metabolic (structured) models to provide not only a statistical analysis of cell lifelines triggered by the environmental fluctuations but also a global assessment of the metabolic response to heterogeneity inside an industrial bioreactor. For the future, the industrial design should be dependent on the computational framework, and this integration work will allow bioprocess scale-up to the industrial scale with an end in mind.

摘要

代谢组学旨在解决调节机制如何协调以实现通量最优、不同代谢目标以及对动态养分供应的适当适应的问题。近几十年来,代谢组学和通量组学的整合已经在合成生物学的目标中实现了用改进的生物转化效率生成所需的生物产物。通过同位素稀释质谱法对绝对代谢物进行定量代表了细胞生物化学的功能读出,并有助于建立代谢(结构)模型,这是系统代谢工程所必需的。在工业实践中,由于养分供应波动引起的群体异质性经常导致性能损失,即降低商业指标(滴度、速率和产率)。因此,对工业生物过程中细胞间时空异质性进行定量理解可以使更稳定的生产者和更可预测的生物过程受益。定量代谢组学分析和代谢建模应用于计算流体动力学 (CFD) 辅助的缩小规模模拟器,可以模拟工业异质性,如养分、溶解气体和其他应激因素的波动,从而为应对生物处理放大过程中的问题提供有价值的线索。在以前的研究中,仅对工业规模生物反应器内部的流体动力学条件获得了有限的了解,这使得逐个案例的放大远非直接。跟踪在大规模生物反应器中循环的细胞的流动路径是评估生产罐中细胞性能的非常有价值的工具。可以使用欧拉-拉格朗日 CFD 模拟来捕获工业规模生物反应器中细胞的“生命线”或“轨迹”。这种新方法可以进一步与代谢(结构)模型耦合,不仅提供由环境波动引发的细胞生命线的统计分析,而且还提供对工业生物反应器内部异质性的代谢响应的全局评估。未来,工业设计应该依赖于计算框架,这种集成工作将允许生物过程放大到工业规模,并以此为目标。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验