Mechano(bio)chemistry, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany.
ARC Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Qld, 4072, Australia.
Angew Chem Int Ed Engl. 2021 Jan 4;60(1):232-236. doi: 10.1002/anie.202006971. Epub 2020 Oct 29.
Coiled coils (CCs) are powerful supramolecular building blocks for biomimetic materials, increasingly used for their mechanical properties. Here, we introduce helix-inducing macrocyclic constraints, so-called staples, to tune thermodynamic and mechanical stability of CCs. We show that thermodynamic stabilization of CCs against helix uncoiling primarily depends on the number of staples, whereas staple positioning controls CC mechanical stability. Inserting a covalent lactam staple at one key force application point significantly increases the barrier to force-induced CC dissociation and reduces structural deformity. A reversible His-Ni -His metal staple also increases CC stability, but ruptures upon mechanical loading to allow helix uncoiling. Staple type, position and number are key design parameters in using helical macrocyclic templates for fine-tuning CC properties in emerging biomaterials.
螺旋线圈(CCs)是仿生材料的强大超分子构建模块,越来越多地因其机械性能而被使用。在这里,我们引入了螺旋诱导大环约束,即所谓的订书钉,以调整 CC 的热力学和机械稳定性。我们表明,CC 对抗螺旋解旋的热力学稳定性主要取决于订书钉的数量,而订书钉的定位控制 CC 的机械稳定性。在一个关键的力施加点插入共价内酰胺订书钉,可显著增加力诱导 CC 解离的势垒,并减少结构变形。一个可逆的 His-Ni-His 金属订书钉也增加了 CC 的稳定性,但在机械加载时会断裂,从而允许螺旋解旋。订书钉的类型、位置和数量是在新兴生物材料中使用螺旋大环模板来微调 CC 性能的关键设计参数。