Kimika Fakultatea, Kimika Aplikatua Saila, Euskal Herriko Unibertsitatea UPV/EHU, Manuel de Lardizabal Pasealekua 3, 20018 Donostia, Euskadi, Spain.
Kimika Fakultatea, Euskal Herriko Unibertsitatea UPV/EHU, Manuel de Lardizabal Pasealekua 3, 20018 Donostia, Euskadi, Spain.
J Am Chem Soc. 2020 Oct 21;142(42):17989-17996. doi: 10.1021/jacs.0c04537. Epub 2020 Oct 9.
We report herein on a NMR-based enantiospecific response for a family of optically active metal-organic frameworks. Cross-polarization of the H-C couple was performed, and the intensities of the C nuclei NMR signals were measured to be different for the two enantiomers. In a direct-pulse experiment, which prevents cross-polarization, the intensity difference of the C NMR signals of the two nanostructured enantiomers vanished. This result is due to changes of the nuclear spin relaxation times due to the electron spin spatial asymmetry induced by chemical bond polarization involving a chiral center. These experiments put forward on firm ground that the chiral-induced spin selectivity effect, which induces chemical bond polarization in the -coupling, is the mechanism responsible for the enantiospecific response. The implications of this finding for the theory of this molecular electron spin polarization effect and the development of quantum biosensing and quantum storage devices are discussed.
我们在此报告了一类手性金属-有机框架的基于 NMR 的对映体特异性响应。对 H-C 偶进行了交叉极化,并且测量了两种对映异构体的 C 核 NMR 信号的强度,发现它们不同。在直接脉冲实验中,交叉极化被阻止,两种纳米结构对映异构体的 C NMR 信号的强度差异消失。这一结果是由于由于涉及手性中心的化学键极化引起的电子自旋空间不对称性导致核自旋弛豫时间的变化。这些实验在坚实的基础上提出,手性诱导的自旋选择性效应在 -耦合中诱导化学键极化,是引起对映体特异性响应的机制。讨论了这一发现对这种分子电子自旋极化效应理论以及量子生物传感和量子存储设备的发展的意义。