Suppr超能文献

开发一种能在 12 周内预测慢性伤口愈合的模型。

Development of a Model to Predict Healing of Chronic Wounds Within 12 Weeks.

机构信息

Leonard D. Schaeffer Center for Health Policy and Economics, University of Southern California, Los Angeles, California.

Center for Economic and Social Research, University of Southern California, Los Angeles, California.

出版信息

Adv Wound Care (New Rochelle). 2020 Sep;9(9):516-524. doi: 10.1089/wound.2019.1091. Epub 2020 Jan 24.

Abstract

Chronic wounds represent a highly prevalent but little recognized condition with substantial implications for patients and payers. While better wound care products and treatment modalities are known to improve healing rates, they are inconsistently used in real-world practice. Predicting healing rates of chronic wounds and comparing to actual rates could be used to detect and reward better quality of care. We developed a prediction model for chronic wound healing. We analyzed electronic medical records (EMRs) for 620,356 chronic wounds of various etiologies in 261,398 patients from 532 wound care clinics in the United States. Patient-level and wound-level parameters influencing wound healing were identified from prior research and clinician input. Logistic regression and classification tree models to predict the probability of wound healing within 12 weeks were developed using a random sample of 70% of the wounds and validated in the remaining data. A total of 365,659 (58.9%) wounds were healed by week 12. The logistic and classification tree models predicted healing with an area under the curve of 0.712 and 0.717, respectively. Wound-level characteristics, such as location, area, depth, and etiology, were more powerful predictors than patient demographics and comorbidities. The probability of wound healing can be predicted with reasonable accuracy in real-world data from EMRs. The resulting severity adjustment model can become the basis for applications like quality measure development, research into clinical practice and performance-based payment.

摘要

慢性伤口是一种普遍存在但未被充分认识的疾病,对患者和支付方都有重大影响。虽然人们知道更好的伤口护理产品和治疗方法可以提高愈合率,但在实际实践中却没有得到一致应用。预测慢性伤口的愈合率并将其与实际率进行比较,可以用于发现和奖励更好的护理质量。我们开发了一种慢性伤口愈合预测模型。我们分析了来自美国 532 家伤口护理诊所的 261398 名患者的 620356 例各种病因的慢性伤口的电子病历 (EMR)。从先前的研究和临床医生的意见中确定了影响伤口愈合的患者水平和伤口水平参数。使用 70%的伤口随机样本开发了逻辑回归和分类树模型,以预测 12 周内伤口愈合的概率,并在其余数据中进行验证。共有 365659 例 (58.9%)伤口在 12 周内愈合。逻辑回归和分类树模型的预测愈合曲线下面积分别为 0.712 和 0.717。伤口水平特征,如位置、面积、深度和病因,比患者人口统计学和合并症更能预测愈合。在 EMR 的真实世界数据中,可以相当准确地预测伤口愈合的可能性。由此产生的严重程度调整模型可以成为质量测量开发、临床实践和基于绩效的支付研究等应用的基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4147/7522633/4089c47404ee/wound.2019.1091_figure2.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验