Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA; Graduate Program in Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA.
Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA.
Dev Biol. 2020 Dec 1;468(1-2):1-13. doi: 10.1016/j.ydbio.2020.09.005. Epub 2020 Sep 14.
Combined methylmalonic acidemia and homocystinuria, cblC type, is the most common inherited disorder of cobalamin metabolism and is characterized by severe fetal developmental defects primarily impacting the central nervous system, hematopoietic system, and heart. CblC was previously shown to be due to mutations in the MMACHC gene, which encodes a protein thought to function in intracellular cobalamin trafficking and biosynthesis of adenosylcobalamin (AdoCbl) and methylcobalamin (MeCbl). These coenzymes are required for the production of succinyl-CoA and methionine, respectively. However, it is currently unclear whether additional roles for MMACHC exist outside of cobalamin metabolism. Furthermore, due to a lack of sufficient animal models, the exact pathophysiology of cblC remains unknown. Here, we report the generation and characterization of two new mouse models to study the role of MMACHC in vivo. CRISPR/Cas9 genome editing was used to develop a Mmachc floxed allele (Mmachc), which we validated as a conditional null. For a gain-of-function approach, we generated a transgenic mouse line that over-expresses functional Mmachc (Mmachc-OE) capable of rescuing Mmachc homozygous mutant lethality. Surprisingly, our data also suggest that these mice may exhibit a partially penetrant maternal-effect rescue, which might have implications for in utero therapeutic interventions to treat cblC. Both the Mmachc and Mmachc-OE mouse models will be valuable resources for understanding the biological roles of MMACHC in a variety of tissue contexts and allow for deeper understanding of the pathophysiology of cblC.
联合甲基丙二酸血症和同型胱氨酸尿症,cblC 型,是最常见的钴胺素代谢遗传紊乱,其特征是严重的胎儿发育缺陷,主要影响中枢神经系统、造血系统和心脏。cblC 以前被认为是由于 MMACHC 基因突变引起的,该基因突变编码一种被认为在细胞内钴胺素转运和腺苷钴胺素(AdoCbl)和甲基钴胺素(MeCbl)的生物合成中发挥作用的蛋白质。这些辅酶分别是生成琥珀酰辅酶 A 和蛋氨酸所必需的。然而,目前尚不清楚 MMACHC 在钴胺素代谢之外是否还有其他作用。此外,由于缺乏足够的动物模型,cblC 的确切病理生理学仍然未知。在这里,我们报告了两种新的小鼠模型的生成和特征,以研究 MMACHC 在体内的作用。CRISPR/Cas9 基因组编辑用于开发 Mmachc 基因敲除等位基因(Mmachc),我们验证其为条件性缺失。为了进行功能获得方法,我们生成了一种过表达功能性 Mmachc(Mmachc-OE)的转基因小鼠系,该基因能够拯救 Mmachc 纯合突变致死。令人惊讶的是,我们的数据还表明,这些小鼠可能表现出部分穿透性的母体效应拯救,这可能对治疗 cblC 的宫内治疗干预具有影响。Mmachc 和 Mmachc-OE 小鼠模型都将是理解 MMACHC 在各种组织环境中的生物学作用的有价值的资源,并允许更深入地了解 cblC 的病理生理学。
Int J Clin Exp Pathol. 2015-8-1
Vitam Horm. 2022
J Inherit Metab Dis. 2011-7-12
Mol Genet Genomic Med. 2020-6
Mol Genet Metab. 2010-2-15
Mol Genet Metab Rep. 2023-8-14
Orphanet J Rare Dis. 2022-11-14
Int J Lab Hematol. 2022-9