Grela Jacek, Nowak Maciej A
Institute of Theoretical Physics and Mark Kac Complex Systems Research Centre, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland.
Phys Rev E. 2020 Aug;102(2-1):022109. doi: 10.1103/PhysRevE.102.022109.
Using our proposed approach to describe extreme matrices, we find an explicit exponentiation formula linking the classical extreme laws of Fréchet, Gumbel, and Weibull given by the Fisher-Tippet-Gnedenko classification and free extreme laws of free Fréchet, free Gumbel, and free Weibull of Ben Arous and Voiculescu. We also develop an extreme random matrix formalism, in which refined questions about extreme matrices can be answered. In particular, we demonstrate explicit calculations for several more or less known random matrix ensembles, providing examples of all three free extreme laws. Finally, we present an exact mapping, showing the equivalence of free extreme laws to the Peak-over-Threshold method in classical probability.
使用我们提出的描述极端矩阵的方法,我们找到了一个明确的指数公式,该公式将由费舍尔 - 蒂皮特 - 格涅坚科分类给出的经典弗雷歇、耿贝尔和威布尔极端定律与本·阿劳斯和沃伊库列斯库的自由弗雷歇、自由耿贝尔和自由威布尔的自由极端定律联系起来。我们还发展了一种极端随机矩阵形式体系,在其中可以回答关于极端矩阵的更精细问题。特别地,我们对几个或多或少已知的随机矩阵系综进行了明确计算,给出了所有三种自由极端定律的示例。最后,我们给出了一个精确映射,展示了自由极端定律与经典概率中的阈值之上峰值方法的等价性。