Suppr超能文献

具有淬火无序的二元神经网络模型的稳态统计

Stationary-State Statistics of a Binary Neural Network Model with Quenched Disorder.

作者信息

Fasoli Diego, Panzeri Stefano

机构信息

Laboratory of Neural Computation, Center for Neuroscience and Cognitive Systems@UniTn, Istituto Italiano di Tecnologia, 38068 Rovereto, Italy.

出版信息

Entropy (Basel). 2019 Jun 26;21(7):630. doi: 10.3390/e21070630.

Abstract

In this paper, we study the statistical properties of the stationary firing-rate states of a neural network model with quenched disorder. The model has arbitrary size, discrete-time evolution equations and binary firing rates, while the topology and the strength of the synaptic connections are randomly generated from known, generally arbitrary, probability distributions. We derived semi-analytical expressions of the occurrence probability of the stationary states and the mean multistability diagram of the model, in terms of the distribution of the synaptic connections and of the external stimuli to the network. Our calculations rely on the probability distribution of the bifurcation points of the stationary states with respect to the external stimuli, calculated in terms of the permanent of special matrices using extreme value theory. While our semi-analytical expressions are exact for any size of the network and for any distribution of the synaptic connections, we focus our study on networks made of several populations, that we term "statistically homogeneous" to indicate that the probability distribution of their connections depends only on the pre- and post-synaptic population indexes, and not on the individual synaptic pair indexes. In this specific case, we calculated analytically the permanent, obtaining a compact formula that outperforms of several orders of magnitude the Balasubramanian-Bax-Franklin-Glynn algorithm. To conclude, by applying the Fisher-Tippett-Gnedenko theorem, we derived asymptotic expressions of the stationary-state statistics of multi-population networks in the large-network-size limit, in terms of the Gumbel (double exponential) distribution. We also provide a Python implementation of our formulas and some examples of the results generated by the code.

摘要

在本文中,我们研究了具有淬火无序的神经网络模型的平稳发放率状态的统计特性。该模型具有任意大小、离散时间演化方程和二元发放率,而突触连接的拓扑结构和强度是从已知的、通常任意的概率分布中随机生成的。我们根据突触连接和网络外部刺激的分布,推导了平稳状态出现概率和模型平均多稳定性图的半解析表达式。我们的计算依赖于平稳状态相对于外部刺激的分岔点的概率分布,该分布是使用极值理论根据特殊矩阵的积和式计算的。虽然我们的半解析表达式对于任何大小的网络和任何突触连接分布都是精确的,但我们将研究重点放在由几个群体组成的网络上,我们将其称为“统计均匀”,以表明其连接的概率分布仅取决于突触前和突触后群体索引,而不取决于单个突触对索引。在这种特定情况下,我们解析地计算了积和式,得到了一个紧凑的公式,其性能比巴拉苏布拉马尼亚-巴克-富兰克林-格林算法高出几个数量级。最后,通过应用费希尔-蒂皮特-格涅坚科定理,我们根据冈贝尔(双指数)分布推导了多群体网络在大网络规模极限下平稳状态统计的渐近表达式。我们还提供了我们公式的Python实现以及代码生成结果的一些示例。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c301/7515124/458231545249/entropy-21-00630-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验