Barbier M, Gaspard P
Center for Nonlinear Phenomena and Complex Systems, Université Libre de Bruxelles (ULB), Code Postal 231, Campus Plaine, B-1050 Brussels, Belgium.
Phys Rev E. 2020 Aug;102(2-1):022141. doi: 10.1103/PhysRevE.102.022141.
For the statistics of currents in quantum transport, microreversibility is shown to provide a way to obtain the statistical cumulants at the order n+1 from the measurement of the cumulants at the order n or lower. This fundamental result is based on relations generalizing the fluctuation-dissipation theorem and the Onsager-Casimir reciprocal relations from linear toward nonlinear transport properties, as a consequence of the time-reversal symmetry of the underlying microscopic Hamiltonian dynamics. The method is demonstrated in detail in the case of multiterminal Aharonov-Bohm rings. Within the independent electron approximation, the cumulant generating function, which fully specifies the statistics of the nonequilibrium currents, is obtained from the scattering matrix of these circuits. The time-reversal symmetry relations are explicitly shown to express the cumulants at equilibrium up to the fourth order in terms of lower-order cumulants and their nonequilibrium responses in the presence of an external magnetic field.
对于量子输运中电流的统计,微观可逆性被证明提供了一种从测量n阶或更低阶累积量来获得n + 1阶统计累积量的方法。这一基本结果基于将涨落耗散定理和昂萨格 - 卡西米尔互易关系从线性输运性质推广到非线性输运性质的关系,这是底层微观哈密顿动力学时间反演对称性的结果。该方法在多端阿哈罗诺夫 - 玻姆环的情况下得到了详细证明。在独立电子近似下,从这些电路的散射矩阵获得了完全确定非平衡电流统计的累积量生成函数。时间反演对称关系被明确展示为在存在外部磁场的情况下,用低阶累积量及其非平衡响应来表示平衡态下直至四阶的累积量。