Likhomanova Polina, Kalashnikov Ilia
National Research Center "Kurchatov Institute," 1 Akademika Kurchatova sq., Moscow, 123182, Russia.
Keldysh Institute of Applied Mathematics, 4 Miusskaya sq., Moscow, 125047, Russia.
Phys Rev E. 2020 Aug;102(2-1):022108. doi: 10.1103/PhysRevE.102.022108.
This article presents a one-dimensional model of diffusion in a heterogeneous environment, which qualitatively reflects the transport properties of a polymeric membrane with carbon nanotube areas. We derive the Fokker-Planck equation from a system of stochastic equations using a diffusion regime in polymers and a ballistic diffusion regime in nanotube areas. We demonstrate how the probability density function changes in the presence of nanotubes. The mean-square displacement of nonlinear time dependence is observed, indicating anomalous diffusion. This model explains the mechanism of anomalous diffusion in a ballistic-diffusion regime. Our approach does not suppose any type of distribution and does not use a fractional differentiate apparatus.
本文提出了一种非均匀环境中扩散的一维模型,该模型定性地反映了具有碳纳米管区域的聚合物膜的传输特性。我们利用聚合物中的扩散机制和纳米管区域中的弹道扩散机制,从一组随机方程推导出福克 - 普朗克方程。我们展示了在存在纳米管的情况下概率密度函数是如何变化的。观察到了非线性时间依赖性的均方位移,表明存在反常扩散。该模型解释了弹道扩散机制中反常扩散的机理。我们的方法不假定任何类型的分布,也不使用分数阶微分装置。