Suppr超能文献

转录突发模型的特殊函数方法。

Special function methods for bursty models of transcription.

机构信息

Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA.

Division of Biology and Biological Engineering & Department of Computing and Mathematical Sciences, California Institute of Technology, Pasadena, California 91125, USA.

出版信息

Phys Rev E. 2020 Aug;102(2-1):022409. doi: 10.1103/PhysRevE.102.022409.

Abstract

We explore a Markov model used in the analysis of gene expression, involving the bursty production of pre-mRNA, its conversion to mature mRNA, and its consequent degradation. We demonstrate that the integration used to compute the solution of the stochastic system can be approximated by the evaluation of special functions. Furthermore, the form of the special function solution generalizes to a broader class of burst distributions. In light of the broader goal of biophysical parameter inference from transcriptomics data, we apply the method to simulated data, demonstrating effective control of precision and runtime. Finally, we propose and validate a non-Bayesian approach for parameter estimation based on the characteristic function of the target joint distribution of pre-mRNA and mRNA.

摘要

我们探索了一种用于分析基因表达的马尔可夫模型,其中涉及前体 mRNA 的突发产生、其转化为成熟 mRNA 以及随后的降解。我们证明了用于计算随机系统解的积分可以通过特殊函数的评估来近似。此外,特殊函数解的形式推广到更广泛的突发分布类。鉴于从转录组学数据推断生物物理参数的更广泛目标,我们将该方法应用于模拟数据,有效地控制了精度和运行时间。最后,我们提出并验证了一种基于前体 mRNA 和 mRNA 目标联合分布特征函数的非贝叶斯参数估计方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验