Suppr超能文献

在体定位慢性植入的电极和光纤在小鼠。

In vivo localization of chronically implanted electrodes and optic fibers in mice.

机构信息

Lendület Laboratory of Systems Neuroscience, Institute of Experimental Medicine, Budapest, Hungary.

Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary.

出版信息

Nat Commun. 2020 Sep 17;11(1):4686. doi: 10.1038/s41467-020-18472-y.

Abstract

Electrophysiology provides a direct readout of neuronal activity at a temporal precision only limited by the sampling rate. However, interrogating deep brain structures, implanting multiple targets or aiming at unusual angles still poses significant challenges for operators, and errors are only discovered by post-hoc histological reconstruction. Here, we propose a method combining the high-resolution information about bone landmarks provided by micro-CT scanning with the soft tissue contrast of the MRI, which allowed us to precisely localize electrodes and optic fibers in mice in vivo. This enables arbitrating the success of implantation directly after surgery with a precision comparable to gold standard histology. Adjustment of the recording depth with micro-drives or early termination of unsuccessful experiments saves many working hours, and fast 3-dimensional feedback helps surgeons avoid systematic errors. Increased aiming precision enables more precise targeting of small or deep brain nuclei and multiple targeting of specific cortical or hippocampal layers.

摘要

电生理学提供了一种直接读取神经元活动的方法,其时间精度仅受采样率限制。然而,对于操作人员来说,深入大脑结构进行探测、植入多个靶点或瞄准不寻常角度仍然存在重大挑战,并且只有通过事后组织学重建才能发现错误。在这里,我们提出了一种方法,将微 CT 扫描提供的关于骨标志物的高分辨率信息与 MRI 的软组织对比度相结合,这使我们能够在活体小鼠中精确定位电极和光纤。这使得我们能够在手术后直接根据植入的精度进行仲裁,精度可与金标准组织学相媲美。使用微驱动器调整记录深度或尽早终止不成功的实验可以节省许多工作时间,快速的 3D 反馈有助于外科医生避免系统误差。提高瞄准精度可以使小或深脑核的靶向更加精确,并对特定的皮质或海马层进行多靶点靶向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9145/7499215/7d932ddca1d8/41467_2020_18472_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验