Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, 48109, USA.
Neuroscience Institute, Langone Medical Center, New York University, New York, NY, 10016, USA.
Nat Commun. 2020 Apr 28;11(1):2063. doi: 10.1038/s41467-020-15769-w.
The combination of in vivo extracellular recording and genetic-engineering-assisted optical stimulation is a powerful tool for the study of neuronal circuits. Precise analysis of complex neural circuits requires high-density integration of multiple cellular-size light sources and recording electrodes. However, high-density integration inevitably introduces stimulation artifact. We present minimal-stimulation-artifact (miniSTAR) μLED optoelectrodes that enable effective elimination of stimulation artifact. A multi-metal-layer structure with a shielding layer effectively suppresses capacitive coupling of stimulation signals. A heavily boron-doped silicon substrate silences the photovoltaic effect induced from LED illumination. With transient stimulation pulse shaping, we reduced stimulation artifact on miniSTAR μLED optoelectrodes to below 50 μV, much smaller than a typical spike detection threshold, at optical stimulation of >50 mW mm irradiance. We demonstrated high-temporal resolution (<1 ms) opto-electrophysiology without any artifact-induced signal quality degradation during in vivo experiments. MiniSTAR μLED optoelectrodes will facilitate functional mapping of local circuits and discoveries in the brain.
体内细胞外记录和基因工程辅助光学刺激的结合是研究神经元回路的有力工具。精确分析复杂的神经回路需要将多个细胞大小的光源和记录电极进行高密度集成。然而,高密度集成不可避免地会引入刺激伪影。我们提出了最小刺激伪影(miniSTAR)μLED 光电探测器,可有效消除刺激伪影。具有屏蔽层的多金属层结构可有效抑制刺激信号的容性耦合。重掺杂硼的硅衬底可抑制 LED 照明引起的光伏效应。通过瞬态刺激脉冲整形,我们将刺激伪影减小到 miniSTAR μLED 光电探测器上的 50μV 以下,在超过 50mW·mm 辐照度的光刺激下,远小于典型的尖峰检测阈值。我们在体内实验中证明了具有高时间分辨率(<1ms)的光电生理学,而没有任何伪影引起的信号质量下降。MiniSTAR μLED 光电探测器将有助于局部回路的功能映射和大脑的发现。