Xu Zhenzhen, Zhu Bin, Park Yongsoek
Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA.
Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA.
Stat Med. 2020 Nov 30;39(27):3914-3936. doi: 10.1002/sim.8694. Epub 2020 Sep 17.
A typical challenge facing the design and analysis of immuno-oncology (IO) trials is the prevalence of nonproportional hazards (NPH) patterns manifested in Kaplan-Meier curves under time-to-event endpoints. The NPH patterns would violate the proportional hazards assumption, and yet conventional design and analysis strategies often ignore such a violation, resulting in underpowered or even falsely negative IO studies. In this article, we show, both empirically and analytically, that treating nonresponders in IO studies of inadequate size would give rise to a variety of NPH patterns; we then present a novel design and analysis strategy, P%-responder information embedded (PRIME), to properly incorporate the dichotomized response incurred from treating nonresponders. Empirical studies demonstrate that the proposed strategy can achieve desirable power, whereas the conventional alternative leads to a severe power loss. The PRIME strategy allows us to quantify the impact of treating nonresponders on study efficiency, thereby enabling a proper design of IO trials with an adequate power. More importantly, it pinpoints a solution to enhance the study efficiency and alleviates the NPH patterns by enrolling more prospective responders. An R package (Immunotherapy.Design) is developed for implementation.
免疫肿瘤学(IO)试验的设计和分析面临的一个典型挑战是,在事件发生时间终点的情况下,Kaplan-Meier曲线中出现的非比例风险(NPH)模式很常见。NPH模式会违反比例风险假设,然而传统的设计和分析策略往往忽略这种违反情况,导致IO研究的效能不足甚至得出错误的阴性结果。在本文中,我们通过实证和分析表明,在规模不足的IO研究中对无反应者进行处理会产生多种NPH模式;然后我们提出了一种新颖的设计和分析策略,即嵌入P%反应者信息(PRIME),以正确纳入对无反应者进行处理所产生的二分反应。实证研究表明,所提出的策略能够实现理想的效能,而传统方法则会导致严重的效能损失。PRIME策略使我们能够量化对无反应者进行处理对研究效率的影响,从而能够对具有足够效能的IO试验进行合理设计。更重要的是,它指出了一种通过招募更多预期反应者来提高研究效率和缓解NPH模式的解决方案。我们开发了一个R包(Immunotherapy.Design)用于实施。