Suppr超能文献

肿瘤学随机 3 期临床试验中比例风险假设的偏离:流行率、相关因素及意义。

Deviation from the Proportional Hazards Assumption in Randomized Phase 3 Clinical Trials in Oncology: Prevalence, Associated Factors, and Implications.

机构信息

Department of Radiation Oncology, Center for Neuro-Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.

Program in Regulatory Science Research, Dana-Farber Cancer Institute, Boston, Massachusetts.

出版信息

Clin Cancer Res. 2019 Nov 1;25(21):6339-6345. doi: 10.1158/1078-0432.CCR-18-3999. Epub 2019 Jul 25.

Abstract

PURPOSE

Deviations from proportional hazards (DPHs), which may be more prevalent in the era of precision medicine and immunotherapy, can lead to underpowered trials or misleading conclusions. We used a meta-analytic approach to estimate DPHs across cancer trials, investigate associated factors, and evaluate data-analysis approaches for future trials. We searched PubMed for phase III trials in breast, lung, prostate, and colorectal cancer published in a preselected list of journals between 2014 and 2016 and extracted individual patient-level data (IPLD) from Kaplan-Meier curves. We re-analyzed IPLD to identify DPHs. Potential efficiency gains, when DPHs were present, of alternative statistical methods relative to standard log-rank based analysis were expressed as sample-size requirements for a fixed power level.

RESULTS

From 152 trials, we obtained IPLD on 129,401 patients. Among 304 Kaplan-Meier figures, 75 (24.7%) exhibited evidence of DPHs, including eight of 14 (57%) KM pairs from immunotherapy trials. Trial type [immunotherapy, odds ratio (OR), 4.29; 95% confidence interval (CI), 1.11-16.6], metastatic patient population (OR, 3.18; 95% CI, 1.26-8.05), and non-OS endpoints (OR, 3.23; 95% CI, 1.79-5.88) were associated with DPHs. In immunotherapy trials, alternative statistical approaches allowed for more efficient clinical trials with fewer patients (up to 74% reduction) relative to log-rank testing.

CONCLUSIONS

DPHs were found in a notable proportion of time-to-event outcomes in published clinical trials in oncology and was more common for immunotherapy trials and non-OS endpoints. Alternative statistical methods, without proportional hazards assumptions, should be considered in the design and analysis of clinical trials when the likelihood of DPHs is high.

摘要

目的

在精准医学和免疫疗法时代,偏离比例风险(DPH)可能更为常见,这可能导致试验效力不足或得出误导性结论。我们采用荟萃分析方法来评估癌症试验中的 DPH,研究相关因素,并评估未来试验的数据分析方法。我们在 PubMed 中搜索了 2014 年至 2016 年期间在预先选定的期刊上发表的乳腺癌、肺癌、前列腺癌和结直肠癌的 III 期临床试验,并从 Kaplan-Meier 曲线中提取个体患者水平数据(IPLD)。我们重新分析 IPLD 以确定 DPH。当存在 DPH 时,替代统计方法相对于标准对数秩分析的潜在效率增益,以固定功效水平的样本量要求表示。

结果

从 152 项试验中,我们获得了 129401 名患者的 IPLD。在 304 个 Kaplan-Meier 图中,有 75 个(24.7%)显示出 DPH 的证据,包括 14 个免疫疗法试验中的 8 个 KM 对。试验类型[免疫疗法,优势比(OR),4.29;95%置信区间(CI),1.11-16.6]、转移性患者人群(OR,3.18;95% CI,1.26-8.05)和非 OS 终点(OR,3.23;95% CI,1.79-5.88)与 DPH 相关。在免疫疗法试验中,替代统计方法允许更有效地进行临床试验,所需患者人数更少(相对于对数秩检验减少高达 74%)。

结论

在已发表的肿瘤学临床研究中,时间事件结局的 DPH 比例相当高,并且免疫疗法试验和非 OS 终点更为常见。当 DPH 的可能性较高时,应考虑在临床试验的设计和分析中使用无比例风险假设的替代统计方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验