Suppr超能文献

电离辐射对中枢神经系统的影响及其在细胞和啮齿动物模型中的对策。

Ionizing radiation-induced risks to the central nervous system and countermeasures in cellular and rodent models.

机构信息

Universities Space Research Association, Columbia, MD, USA.

Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA.

出版信息

Int J Radiat Biol. 2021;97(sup1):S132-S150. doi: 10.1080/09553002.2020.1820598. Epub 2020 Oct 20.

Abstract

PURPOSE

Harmful effects of ionizing radiation on the Central Nervous System (CNS) are a concerning outcome in the field of cancer radiotherapy and form a major risk for deep space exploration. Both acute and chronic CNS irradiation induce a complex network of molecular and cellular alterations including DNA damage, oxidative stress, cell death and systemic inflammation, leading to changes in neuronal structure and synaptic plasticity with behavioral and cognitive consequences in animal models. Due to this complexity, countermeasure or therapeutic approaches to reduce the harmful effects of ionizing radiation include a wide range of protective and mitigative strategies, which merit a thorough comparative analysis.

MATERIALS AND METHODS

We reviewed current approaches for developing countermeasures to both targeted and non-targeted effects of ionizing radiation on the CNS from the molecular and cellular to the behavioral level.

RESULTS

We focus on countermeasures that aim to mitigate the four main detrimental actions of radiation on CNS: DNA damage, free radical formation and oxidative stress, cell death, and harmful systemic responses including tissue death and neuroinflammation. We propose a comprehensive review of CNS radiation countermeasures reported for the full range of irradiation types (photons and particles, low and high linear energy transfer) and doses (from a fraction of gray to several tens of gray, fractionated and unfractionated), with a particular interest for exposure conditions relevant to deep-space environment and radiotherapy. Our review reveals the importance of combined strategies that increase DNA protection and repair, reduce free radical formation and increase their elimination, limit inflammation and improve cell viability, limit tissue damage and increase repair and plasticity.

CONCLUSIONS

The majority of therapeutic approaches to protect the CNS from ionizing radiation have been limited to acute high dose and high dose rate gamma irradiation, and few are translatable from animal models to potential human application due to harmful side effects and lack of blood-brain barrier permeability that precludes peripheral administration. Therefore, a promising research direction would be to focus on practical applicability and effectiveness in a wider range of irradiation paradigms, from fractionated therapeutic to deep space radiation. In addition to discovering novel therapeutics, it would be worth maximizing the benefits and reducing side effects of those that already exist. Finally, we suggest that novel cellular and tissue models for developing and testing countermeasures in the context of other impairments might also be applied to the field of CNS responses to ionizing radiation.

摘要

目的

电离辐射对中枢神经系统(CNS)的有害影响是癌症放射治疗领域令人关注的结果,也是深空探索的主要风险因素。急性和慢性 CNS 照射都会引起复杂的分子和细胞改变网络,包括 DNA 损伤、氧化应激、细胞死亡和全身炎症,导致动物模型中神经元结构和突触可塑性发生变化,并伴有行为和认知后果。由于这种复杂性,减轻电离辐射有害影响的对策或治疗方法包括广泛的保护和缓解策略,值得进行彻底的比较分析。

材料和方法

我们回顾了从分子和细胞到行为水平,针对 CNS 电离辐射的靶向和非靶向作用开发对策的当前方法。

结果

我们专注于旨在减轻辐射对 CNS 的四种主要有害作用的对策:DNA 损伤、自由基形成和氧化应激、细胞死亡以及包括组织死亡和神经炎症在内的有害全身反应。我们提出了对 CNS 辐射对策的全面综述,这些对策涵盖了各种类型(光子和粒子、低和高线性能量转移)和剂量(从格雷的一小部分到几十格雷,分次和不分次)的照射,特别关注与深空环境和放射治疗相关的暴露条件。我们的综述揭示了联合策略的重要性,这些策略可以增加 DNA 的保护和修复,减少自由基的形成并增加其消除,限制炎症并提高细胞活力,限制组织损伤并增加修复和可塑性。

结论

大多数保护 CNS 免受电离辐射的治疗方法仅限于急性高剂量和高剂量率伽马照射,由于有害的副作用和缺乏血脑屏障通透性,很少能够从动物模型转化为潜在的人类应用,这会限制外周给药。因此,一个有前途的研究方向将是专注于更广泛的照射范例(从分次治疗到深空辐射)中的实际适用性和有效性。除了发现新的治疗方法外,最大限度地提高现有治疗方法的益处并减少其副作用也将是值得的。最后,我们建议将用于开发和测试对策的新型细胞和组织模型也应用于 CNS 对电离辐射反应的领域。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验