Suppr超能文献

一项关于中子剂量、分割、年龄和性别对 21000 只小鼠死亡率影响的竞争风险机器学习研究。

A competing risks machine learning study of neutron dose, fractionation, age, and sex effects on mortality in 21,000 mice.

机构信息

Center for Radiological Research, Columbia University Irving Medical Center, 630 West 168th street, VC-11, New York, NY, 10032, USA.

出版信息

Sci Rep. 2024 Aug 2;14(1):17974. doi: 10.1038/s41598-024-68717-9.

Abstract

This study explores the impact of densely-ionizing radiation on non-cancer and cancer diseases, focusing on dose, fractionation, age, and sex effects. Using historical mortality data from approximately 21,000 mice exposed to fission neutrons, we employed random survival forest (RSF), a powerful machine learning algorithm accommodating nonlinear dependencies and interactions, treating cancer and non-cancer outcomes as competing risks. Unlike traditional parametric models, RSF avoids strict assumptions and captures complex data relationships through decision tree ensembles. SHAP (SHapley Additive exPlanations) values and variable importance scores were employed for interpretation. The findings revealed clear dose-response trends, with cancer being the predominant cause of mortality. SHAP value dose-response shapes differed, showing saturation for cancer hazard at high doses (> 2 Gy) and a more linear pattern at lower doses. Non-cancer responses remained more linear throughout the entire dose range. There was a potential inverse dose rate effect for cancer, while the evidence for non-cancer was less conclusive. Sex and age effects were less pronounced. This investigation, utilizing machine learning, enhances our understanding of the patterns of non-cancer and cancer mortality induced by densely-ionizing radiations, emphasizing the importance of such approaches in radiation research, including space travel and radioprotection.

摘要

本研究探讨了密集电离辐射对非癌症和癌症疾病的影响,重点关注剂量、分割、年龄和性别效应。使用约 21000 只接受裂变中子照射的小鼠的历史死亡率数据,我们采用了随机生存森林(RSF),这是一种强大的机器学习算法,可适应非线性依赖关系和相互作用,将癌症和非癌症结果视为竞争风险。与传统的参数模型不同,RSF 避免了严格的假设,并通过决策树集捕捉复杂的数据关系。使用 SHAP(Shapley Additive exPlanations)值和变量重要性得分进行解释。研究结果显示出明显的剂量反应趋势,癌症是导致死亡的主要原因。SHAP 值剂量反应形状不同,在高剂量(>2 Gy)时癌症危害呈饱和趋势,而在低剂量时呈更线性趋势。整个剂量范围内,非癌症反应仍然更呈线性。癌症存在潜在的逆剂量率效应,而非癌症的证据则不太确定。性别和年龄效应不太明显。这项利用机器学习的研究增强了我们对密集电离辐射引起的非癌症和癌症死亡率模式的理解,强调了这种方法在辐射研究中的重要性,包括太空旅行和辐射防护。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验