Suppr超能文献

学习用于图像分类的判别性表示。

Learning discriminative representation for image classification.

作者信息

Peng Chong, Liu Yang, Zhang Xin, Kang Zhao, Chen Yongyong, Chen Chenglizhao, Cheng Qiang

机构信息

College of Computer Science and Technology, Qingdao University, China.

School of Computer Science and Engineering, University of Electronic Science and Technology of China, China.

出版信息

Knowl Based Syst. 2021 Dec 5;233. doi: 10.1016/j.knosys.2021.107517. Epub 2021 Sep 23.

Abstract

We introduce a new classifier for small-sample image data based on a two-dimensional discriminative regression approach. For a test example, our method estimates a discriminative representation from training examples, which accounts for discriminativeness between classes and enables accurate derivation of categorical information. Unlike existing methods that vectored image data, the learning of the representation in our method is performed with the two-dimensional features of the data, and thus inherent spatial information of the data is fully exploited. This new type of two-dimensional discriminative regression, different from existing regression models, allows for building a highly effective and robust classifier for image data through explicitly incorporating discriminative information and inherent spatial information. We compare our method with several state-of-the-art classifiers of small-sample images and experimental results show superior performance of the proposed method in classification accuracy as well as robustness to noise corruption.

摘要

我们基于二维判别回归方法,为小样本图像数据引入了一种新的分类器。对于一个测试示例,我们的方法从训练示例中估计出一种判别表示,该表示考虑了类间的判别性,并能够准确推导类别信息。与现有的将图像数据向量化的方法不同,我们方法中表示的学习是利用数据的二维特征进行的,因此数据的固有空间信息得到了充分利用。这种新型的二维判别回归与现有回归模型不同,通过明确纳入判别信息和固有空间信息,能够为图像数据构建一个高效且鲁棒的分类器。我们将我们的方法与几种小样本图像的先进分类器进行了比较,实验结果表明,所提出的方法在分类准确率以及对噪声干扰的鲁棒性方面表现出卓越的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0e73/9436008/5d5290fadeaa/nihms-1787407-f0002.jpg

相似文献

1
Learning discriminative representation for image classification.学习用于图像分类的判别性表示。
Knowl Based Syst. 2021 Dec 5;233. doi: 10.1016/j.knosys.2021.107517. Epub 2021 Sep 23.
2
4
Low-rank discriminative regression learning for image classification.基于低秩判别回归学习的图像分类方法。
Neural Netw. 2020 May;125:245-257. doi: 10.1016/j.neunet.2020.02.007. Epub 2020 Feb 19.
7
Fuzzy Discriminative Block Representation Learning for Image Feature Extraction.用于图像特征提取的模糊判别块表示学习
IEEE Trans Image Process. 2022;31:4994-5008. doi: 10.1109/TIP.2022.3191846. Epub 2022 Aug 1.
8
Learning Robust and Discriminative Subspace With Low-Rank Constraints.学习具有低秩约束的鲁棒和判别子空间。
IEEE Trans Neural Netw Learn Syst. 2016 Nov;27(11):2160-2173. doi: 10.1109/TNNLS.2015.2464090. Epub 2015 Aug 31.
10
ELM embedded discriminative dictionary learning for image classification.基于 ELM 的嵌入判别字典学习图像分类。
Neural Netw. 2020 Mar;123:331-342. doi: 10.1016/j.neunet.2019.11.015. Epub 2019 Dec 20.

本文引用的文献

3
Robust Bi-Stochastic Graph Regularized Matrix Factorization for Data Clustering.用于数据聚类的鲁棒双随机图正则化矩阵分解
IEEE Trans Pattern Anal Mach Intell. 2022 Jan;44(1):390-403. doi: 10.1109/TPAMI.2020.3007673. Epub 2021 Dec 7.
4
5
Robust Kernelized Multiview Self-Representation for Subspace Clustering.用于子空间聚类的鲁棒核化多视图自表示
IEEE Trans Neural Netw Learn Syst. 2021 Feb;32(2):868-881. doi: 10.1109/TNNLS.2020.2979685. Epub 2021 Feb 4.
7
Scaled Simplex Representation for Subspace Clustering.用于子空间聚类的缩放单形表示法。
IEEE Trans Cybern. 2021 Mar;51(3):1493-1505. doi: 10.1109/TCYB.2019.2943691. Epub 2021 Feb 17.
8
Uncertainty-Aware Principal Component Analysis.不确定性感知主成分分析
IEEE Trans Vis Comput Graph. 2020 Jan;26(1):822-831. doi: 10.1109/TVCG.2019.2934812. Epub 2019 Oct 10.
9
Tensor Robust Principal Component Analysis with a New Tensor Nuclear Norm.具有新型张量核范数的张量鲁棒主成分分析
IEEE Trans Pattern Anal Mach Intell. 2020 Apr;42(4):925-938. doi: 10.1109/TPAMI.2019.2891760. Epub 2019 Jan 9.
10
Tensor LRR and Sparse Coding-Based Subspace Clustering.基于张量 LRR 和稀疏编码的子空间聚类。
IEEE Trans Neural Netw Learn Syst. 2016 Oct;27(10):2120-33. doi: 10.1109/TNNLS.2016.2553155. Epub 2016 Apr 27.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验