Suppr超能文献

基于卷积神经网络的深度矩阵分解用于图像修复

Deep Matrix Factorization Based on Convolutional Neural Networks for Image Inpainting.

作者信息

Ma Xiaoxuan, Li Zhiwen, Wang Hengyou

机构信息

School of Electrical and Information Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China.

School of Science, Beijing University of Civil Engineering and Architecture, Beijing 100044, China.

出版信息

Entropy (Basel). 2022 Oct 20;24(10):1500. doi: 10.3390/e24101500.

Abstract

In this work, we formulate the image in-painting as a matrix completion problem. Traditional matrix completion methods are generally based on linear models, assuming that the matrix is low rank. When the original matrix is large scale and the observed elements are few, they will easily lead to over-fitting and their performance will also decrease significantly. Recently, researchers have tried to apply deep learning and nonlinear techniques to solve matrix completion. However, most of the existing deep learning-based methods restore each column or row of the matrix independently, which loses the global structure information of the matrix and therefore does not achieve the expected results in the image in-painting. In this paper, we propose a deep matrix factorization completion network (DMFCNet) for image in-painting by combining deep learning and a traditional matrix completion model. The main idea of DMFCNet is to map iterative updates of variables from a traditional matrix completion model into a fixed depth neural network. The potential relationships between observed matrix data are learned in a trainable end-to-end manner, which leads to a high-performance and easy-to-deploy nonlinear solution. Experimental results show that DMFCNet can provide higher matrix completion accuracy than the state-of-the-art matrix completion methods in a shorter running time.

摘要

在这项工作中,我们将图像修复问题表述为一个矩阵填充问题。传统的矩阵填充方法通常基于线性模型,假设矩阵是低秩的。当原始矩阵规模较大且观测元素较少时,它们很容易导致过拟合,其性能也会显著下降。最近,研究人员尝试应用深度学习和非线性技术来解决矩阵填充问题。然而,现有的大多数基于深度学习的方法都是独立地恢复矩阵的每一列或每一行,这丢失了矩阵的全局结构信息,因此在图像修复中无法达到预期效果。在本文中,我们通过结合深度学习和传统矩阵填充模型,提出了一种用于图像修复的深度矩阵分解填充网络(DMFCNet)。DMFCNet的主要思想是将传统矩阵填充模型中变量的迭代更新映射到一个固定深度的神经网络中。以可训练的端到端方式学习观测矩阵数据之间的潜在关系,从而得到一个高性能且易于部署的非线性解决方案。实验结果表明,DMFCNet能够在更短的运行时间内提供比现有最先进的矩阵填充方法更高的矩阵填充精度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6832/9602103/b35e16738d84/entropy-24-01500-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验