IEEE J Biomed Health Inform. 2021 Jun;25(6):1964-1974. doi: 10.1109/JBHI.2020.3024589. Epub 2021 Jun 3.
Stroke survivors are often characterized by hemiparesis, i.e., paralysis in one half of the body, severely affecting upper limb movements. Monitoring the progression of hemiparesis requires manual observation of limb movements at regular intervals, and hence is a labour intensive process. In this work, we use wrist-worn accelerometers for automated assessment of hemiparesis in acute stroke. We propose novel measures of similarity and asymmetry in hand activities through bivariate Poincaré analysis between two-hand accelerometer data for quantifying hemiparetic severity. The proposed descriptors characterize the distribution of activity surrogates derived from acceleration of the two hands, on a 2D bivariate Poincaré Plot. Experiments show that while the descriptors CSD1 and CSD2 can identify hemiparetic patients from control subjects, their normalized difference CSDR and the descriptors Complex Cross-Correlation Measure ( C3M) and Activity Asymmetry Index ( AAI) can distinguish between mild, moderate and severe hemiparesis. These measures are compared with traditional measures of cross-correlation and evaluated against the National Institutes of Health Stroke Scale (NIHSS), the clinical gold standard for hemiparetic severity estimation. This study, undertaken on 40 acute stroke patients with varying levels of hemiparesis and 15 healthy controls, validates the use of short length ( 5 minutes) wearable accelerometry data for identifying hemiparesis with greater clinical sensitivity. Results show that the proposed descriptors with a hierarchical classification model outperform state-of-the-art methods with overall accuracy of 0.78 and 0.85 for 4-class and 3-class hemiparesis identification respectively.
中风幸存者通常表现为偏瘫,即身体一侧瘫痪,严重影响上肢运动。监测偏瘫的进展需要定期对手部运动进行手动观察,因此这是一个劳动密集型过程。在这项工作中,我们使用腕戴式加速度计自动评估急性中风患者的偏瘫。我们通过双手加速度计数据的双变量 Poincaré 分析,提出了新的手活动相似性和不对称性度量方法,用于量化偏瘫的严重程度。所提出的描述符通过双变量 Poincaré 图的二维分布来表征从双手加速度得出的活动替代物的分布。实验表明,虽然描述符 CSD1 和 CSD2 可以从对照组中识别偏瘫患者,但它们的归一化差异 CSDR 和描述符复杂互相关度量 ( C3M) 和活动不对称指数 ( AAI) 可以区分轻度、中度和重度偏瘫。这些度量与传统的互相关度量进行了比较,并与国立卫生研究院中风量表 (NIHSS) 进行了评估,NIHSS 是偏瘫严重程度评估的临床金标准。这项针对 40 名偏瘫程度不同的急性中风患者和 15 名健康对照者的研究验证了使用短长度(5 分钟)可穿戴加速度计数据来识别偏瘫的方法,具有更高的临床灵敏度。结果表明,所提出的描述符结合分层分类模型优于最先进的方法,在 4 类和 3 类偏瘫识别方面的总体准确性分别为 0.78 和 0.85。