Suppr超能文献

急性中风患者自发运动时的上肢运动概况

Upper limb movement profiles during spontaneous motion in acute stroke.

作者信息

Datta Shreyasi, Karmakar Chandan K, Rao Aravinda S, Yan Bernard, Palaniswami Marimuthu

机构信息

Department of Electrical and Electronic Engineering, University of Melbourne, Melbourne, Australia.

School of Information Technology, Deakin University, Melbourne, Australia.

出版信息

Physiol Meas. 2021 May 11;42(4). doi: 10.1088/1361-6579/abf01e.

Abstract

The clinical assessment of upper limb hemiparesis in acute stroke involves repeated manual examination of hand movements during instructed tasks. This process is labour-intensive and prone to human error as well as being strenuous for the patient. Wearable motion sensors can automate the process by measuring characteristics of hand activity. Existing work in this direction either uses multiple sensors or complex instructed movements, or analyzes only theof upper limb motion. These methods are obtrusive and strenuous for acute stroke patients and are also sensitive to noise. In this work, we propose to use only two wrist-worn accelerometer sensors to study theof completely spontaneous upper limb motion and investigate correlation with clinical scores for acute stroke care.The velocity time series estimated from acquired acceleration data during spontaneous motion is decomposed into smaller movement elements. Measures of density, duration and smoothness of these component elements are extracted and their disparity is studied across the two hands.Spontaneous upper limb motion in acute stroke can be decomposed into movement elements that resemble point-to-point reaching tasks. These elements are smoother and sparser in the normal hand than in the hemiparetic hand, and the amount of smoothness correlates with hemiparetic severity. Features characterizing the disparity of these movement elements between the two hands show statistical significance in differentiating mild-to-moderate and severe hemiparesis. Using data from 67 acute stroke patients, the proposed method can classify the two levels of hemiparetic severity with 85% accuracy. Additionally, compared to activity-based features, the proposed method is robust to the presence of noise in acquired data.This work demonstrates that the quality of upper limb motion can characterize and identify hemiparesis in stroke survivors. This is clinically significant towards the continuous automated assessment of hemiparesis in acute stroke using minimally intrusive wearable sensors.

摘要

急性中风上肢偏瘫的临床评估涉及在指定任务期间对手部运动进行反复的手动检查。这个过程劳动强度大,容易出现人为误差,而且对患者来说也很费力。可穿戴运动传感器可以通过测量手部活动特征来实现这一过程的自动化。这方面的现有工作要么使用多个传感器,要么使用复杂的指定动作,要么只分析上肢运动的[此处原文缺失相关内容]。这些方法对急性中风患者来说具有侵入性且费力,并且对噪声也很敏感。在这项工作中,我们建议仅使用两个腕戴式加速度计传感器来研究完全自发的上肢运动的[此处原文缺失相关内容],并研究其与急性中风护理临床评分的相关性。

从自发运动期间采集的加速度数据估计的速度时间序列被分解为较小的运动元素。提取这些组成元素的密度、持续时间和平滑度的度量,并研究两只手之间的差异。急性中风中的自发上肢运动可以分解为类似于点对点到达任务的运动元素。这些元素在正常手中比在偏瘫手中更平滑、更稀疏,并且平滑度的量与偏瘫严重程度相关。表征两只手之间这些运动元素差异的特征在区分轻度至中度和重度偏瘫方面具有统计学意义。使用来自67名急性中风患者的数据,所提出的方法可以以85%的准确率对偏瘫严重程度的两个级别进行分类。此外,与基于活动的特征相比,所提出的方法对采集数据中的噪声具有鲁棒性。

这项工作表明,上肢运动质量可以表征和识别中风幸存者的偏瘫。这对于使用微创可穿戴传感器对急性中风偏瘫进行连续自动评估具有临床意义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验