Suppr超能文献

微孢子虫极 tube 入侵机械的三维组织和动力学。

3-Dimensional organization and dynamics of the microsporidian polar tube invasion machinery.

机构信息

Skirball Institute of Biomolecular Medicine and Department of Cell Biology, New York University School of Medicine, New York, New York, United States of America.

Microscopy Laboratory, Division of Advanced Research Technologies, New York University School of Medicine, New York, New York, United States of America.

出版信息

PLoS Pathog. 2020 Sep 18;16(9):e1008738. doi: 10.1371/journal.ppat.1008738. eCollection 2020 Sep.

Abstract

Microsporidia, a divergent group of single-celled eukaryotic parasites, harness a specialized harpoon-like invasion apparatus called the polar tube (PT) to gain entry into host cells. The PT is tightly coiled within the transmissible extracellular spore, and is about 20 times the length of the spore. Once triggered, the PT is rapidly ejected and is thought to penetrate the host cell, acting as a conduit for the transfer of infectious cargo into the host. The organization of this specialized infection apparatus in the spore, how it is deployed, and how the nucleus and other large cargo are transported through the narrow PT are not well understood. Here we use serial block-face scanning electron microscopy to reveal the 3-dimensional architecture of the PT and its relative spatial orientation to other organelles within the spore. Using high-speed optical microscopy, we also capture and quantify the entire PT germination process of three human-infecting microsporidian species in vitro: Anncaliia algerae, Encephalitozoon hellem and E. intestinalis. Our results show that the emerging PT experiences very high accelerating forces to reach velocities exceeding 300 μm⋅s-1, and that firing kinetics differ markedly between species. Live-cell imaging reveals that the nucleus, which is at least 7 times larger than the diameter of the PT, undergoes extreme deformation to fit through the narrow tube, and moves at speeds comparable to PT extension. Our study sheds new light on the 3-dimensional organization, dynamics, and mechanism of PT extrusion, and shows how infectious cargo moves through the tube to initiate infection.

摘要

微孢子虫是一类具有独特形态的单细胞真核寄生虫,它们利用一种专门的鱼叉样入侵装置——极丝(PT)进入宿主细胞。PT 紧密卷曲在可传播的细胞外孢子内,长度约为孢子的 20 倍。一旦被触发,PT 就会迅速射出,被认为可以穿透宿主细胞,充当将感染性货物转移到宿主细胞的通道。孢子中这种特殊感染装置的组织方式、它的部署方式以及细胞核和其他大型货物如何通过狭窄的 PT 进行运输,目前还不太清楚。在这里,我们使用连续块面扫描电子显微镜揭示了 PT 的三维结构及其在孢子内与其他细胞器的相对空间取向。我们还使用高速光学显微镜,捕获并量化了三种人类感染的微孢子虫物种在体外的整个 PT 发芽过程:阿尔及利亚 Anncaliia 种、脑炎微孢子虫和肠微孢子虫。我们的结果表明,正在伸出的 PT 经历了非常高的加速力,达到超过 300 μm⋅s-1 的速度,并且不同物种之间的发射动力学有明显差异。活细胞成像显示,细胞核至少比 PT 的直径大 7 倍,为了通过狭窄的管,经历了极端变形,并以与 PT 延伸相当的速度移动。我们的研究揭示了 PT 挤出的三维组织、动力学和机制,展示了感染性货物如何通过管移动以引发感染。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f0b/7526891/e6e814e33d66/ppat.1008738.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验