Suppr超能文献

中文译文:基于中国人群常规临床生物标志物开发和验证 2 种综合衰老指标:来自 2 项前瞻性队列研究的分析。

Development and Validation of 2 Composite Aging Measures Using Routine Clinical Biomarkers in the Chinese Population: Analyses From 2 Prospective Cohort Studies.

机构信息

Center for Clinical Big Data and Analytics, Second Affiliated Hospital and Department of Big Data in Health Science, School of Public Health, Zhejiang University School of Medicine, Hangzhou, China.

Department of Pathology, Yale School of Medicine, New Haven, Connecticut.

出版信息

J Gerontol A Biol Sci Med Sci. 2021 Aug 13;76(9):1627-1632. doi: 10.1093/gerona/glaa238.

Abstract

BACKGROUND

This study aimed to: (i) develop 2 composite aging measures in the Chinese population using 2 recent advanced algorithms (the Klemera and Doubal method and Mahalanobis distance); and (ii) validate the 2 measures by examining their associations with mortality and disease counts.

METHODS

Based on data from the China Nutrition and Health Survey (CHNS) 2009 wave (N = 8119, aged 20-79 years, 53.5% women), a nationwide prospective cohort study of the Chinese population, we developed Klemera and Doubal method-biological age (KDM-BA) and physiological dysregulation (PD, derived from Mahalanobis distance) using 12 biomarkers. For the validation analysis, we used Cox proportional hazard regression models (for mortality) and linear, Poisson, and logistic regression models (for disease counts) to examine the associations. We replicated the validation analysis in the China Health and Retirement Longitudinal Study (CHARLS, N = 9304, aged 45-99 years, 53.4% women).

RESULTS

Both aging measures were predictive of mortality after accounting for age and gender (KDM-BA, per 1-year, hazard ratio [HR] = 1.14, 95% confidence interval [CI] = 1.08, 1.19; PD, per 1-SD, HR = 1.50, 95% CI = 1.33, 1.69). With few exceptions, these mortality predictions were robust across stratifications by age, gender, education, and health behaviors. The 2 aging measures were associated with disease counts both cross-sectionally and longitudinally. These results were generally replicable in CHARLS although 4 biomarkers were not available.

CONCLUSIONS

We successfully developed and validated 2 composite aging measures-KDM-BA and PD, which have great potentials for applications in early identifications and preventions of aging and aging-related diseases in China.

摘要

背景

本研究旨在:(i)使用两种最新的先进算法(Klemera 和 Doubal 方法以及马氏距离),在中国人群中开发 2 种综合衰老指标;(ii)通过检查与死亡率和疾病计数的关联来验证这 2 种指标。

方法

基于中国营养与健康调查(CHNS)2009 年(N=8119,年龄 20-79 岁,53.5%女性)的数据,我们对中国人群进行了一项全国性前瞻性队列研究,利用 12 种生物标志物开发了 Klemera 和 Doubal 方法生物学年龄(KDM-BA)和生理失调(PD,源自马氏距离)。为了验证分析,我们使用 Cox 比例风险回归模型(用于死亡率)和线性、泊松和逻辑回归模型(用于疾病计数)来检查关联。我们在 CHARLS(中国健康与退休纵向研究)中复制了验证分析(N=9304,年龄 45-99 岁,53.4%女性)。

结果

在考虑年龄和性别后,这两种衰老指标都可以预测死亡率(KDM-BA,每增加 1 年,风险比 [HR] = 1.14,95%置信区间 [CI] = 1.08,1.19;PD,每增加 1 个标准差,HR = 1.50,95%CI = 1.33,1.69)。除了少数例外情况,这些死亡率预测在按年龄、性别、教育程度和健康行为分层时具有稳健性。这两种衰老指标在横断面和纵向都与疾病计数相关。这些结果在 CHARLS 中基本具有可重复性,尽管有 4 种生物标志物不可用。

结论

我们成功地开发和验证了 2 种综合衰老指标-KDM-BA 和 PD,它们在中国早期识别和预防衰老和与衰老相关的疾病方面具有很大的应用潜力。

相似文献

6
Estimating Biological Age in the Singapore Longitudinal Aging Study.估算新加坡纵向老龄化研究中的生物年龄。
J Gerontol A Biol Sci Med Sci. 2020 Sep 25;75(10):1913-1920. doi: 10.1093/gerona/glz146.

引用本文的文献

本文引用的文献

1
The optimal timing of teaching and learning across the life course.贯穿一生的教学与学习的最佳时机。
Philos Trans R Soc Lond B Biol Sci. 2020 Jul 20;375(1803):20190500. doi: 10.1098/rstb.2019.0500. Epub 2020 Jun 1.
4
Informative frailty indices from binarized biomarkers.来自二值化生物标志物的信息性衰弱指数。
Biogerontology. 2020 Jun;21(3):345-355. doi: 10.1007/s10522-020-09863-1. Epub 2020 Mar 10.
8
Estimating Biological Age in the Singapore Longitudinal Aging Study.估算新加坡纵向老龄化研究中的生物年龄。
J Gerontol A Biol Sci Med Sci. 2020 Sep 25;75(10):1913-1920. doi: 10.1093/gerona/glz146.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验