Arbeev Konstantin G, Bagley Olivia, Ukraintseva Svetlana V, Duan Hongzhe, Kulminski Alexander M, Stallard Eric, Wu Deqing, Christensen Kaare, Feitosa Mary F, Thyagarajan Bharat, Zmuda Joseph M, Yashin Anatoliy I
Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, United States.
Danish Aging Research Center, Department of Public Health, University of Southern Denmark, Odense, Denmark.
Front Public Health. 2020 Mar 6;8:56. doi: 10.3389/fpubh.2020.00056. eCollection 2020.
Biological aging results in changes in an organism that accumulate over age in a complex fashion across different regulatory systems, and their cumulative effect manifests in increased physiological dysregulation (PD) and declining robustness and resilience that increase risks of health disorders and death. Several composite measures involving multiple biomarkers that capture complex effects of aging have been proposed. We applied one such approach, the Mahalanobis distance (D), to baseline measurements of various biomarkers (inflammation, hematological, diabetes-associated, lipids, endocrine, renal) in 3,279 participants from the Long Life Family Study (LLFS) with complete biomarker data. We used D to estimate the level of PD by summarizing information about multiple deviations of biomarkers from specified "norms" in the reference population (here, LLFS participants younger than 60 years at baseline). An increase in D was associated with significantly higher mortality risk (hazard ratio per standard deviation of D: 1.42; 95% confidence interval: [1.3, 1.54]), even after adjustment for a composite measure summarizing 85 health-related deficits (disabilities, diseases, less severe symptoms), age, and other covariates. Such composite measures significantly improved mortality predictions especially in the subsample of participants from families enriched for exceptional longevity (the areas under the receiver operating characteristic curves are 0.88 vs. 0.85, in models with and without the composite measures, = 2.9 × 10). Sensitivity analyses confirmed that our conclusions are not sensitive to different aspects of computational procedures. Our findings provide the first evidence of association of PD with mortality and its predictive performance in a unique sample selected for exceptional familial longevity.
生物衰老导致生物体发生变化,这些变化随着年龄增长以复杂的方式在不同调节系统中积累,其累积效应表现为生理失调(PD)增加,稳健性和恢复力下降,从而增加健康障碍和死亡风险。已经提出了几种涉及多种生物标志物的综合测量方法,这些方法可以捕捉衰老的复杂影响。我们将一种这样的方法,即马氏距离(D),应用于长寿家族研究(LLFS)中3279名参与者的各种生物标志物(炎症、血液学、糖尿病相关、脂质、内分泌、肾脏)的基线测量,这些参与者拥有完整的生物标志物数据。我们使用D通过总结生物标志物相对于参考人群(此处为基线时年龄小于60岁的LLFS参与者)中指定“标准”的多个偏差信息来估计PD水平。即使在调整了总结85种与健康相关缺陷(残疾、疾病、不太严重的症状)、年龄和其他协变量的综合测量指标后,D的增加仍与显著更高的死亡风险相关(D每增加一个标准差的风险比:1.42;95%置信区间:[1.3, 1.54])。此类综合测量指标显著改善了死亡率预测,尤其是在来自长寿家族的参与者子样本中(在有和没有综合测量指标的模型中,受试者工作特征曲线下面积分别为0.88和0.85, = 2.9 × 10)。敏感性分析证实我们的结论对计算程序的不同方面不敏感。我们的研究结果首次证明了PD与死亡率之间的关联及其在为家族性长寿而选择的独特样本中的预测性能。