Suppr超能文献

用于神经组织刺激的活性氧化铱薄膜(AIROF)电极。

Activated iridium oxide film (AIROF) electrodes for neural tissue stimulation.

机构信息

Department of Bioengineering, The University of Texas at Dallas, Richardson, TX, United States of America.

University of Texas Southwestern Medical School, Dallas, TX, United States of America.

出版信息

J Neural Eng. 2020 Oct 13;17(5):056001. doi: 10.1088/1741-2552/abb9bf.

Abstract

OBJECTIVE

Iridium oxide films are commonly used as a high charge-injection electrode material in neural devices. Yet, few studies have performed in-depth assessments of material performance versus film thickness, especially for films grown on three-dimensional (instead of planar) metal surfaces in neutral pH electrolyte solutions. Further, few studies have investigated the driving voltage requirements for constant-current stimulation using activated iridium oxide (AIROF) electrodes, which will be a key constraint for future use in wirelessly powered neural devices.

APPROACH

In this study, iridium microwire probes were activated by repeated potential pulsing in room temperature phosphate buffered saline (pH 7.1-7.3). Electrochemical measurements were recorded in three different electrolyte conditions for probes with different geometric surface areas (GSAs) as the AIROF thickness was increased.

MAIN RESULTS

Maintaining an anodic potential bias during the inter-pulse interval was required for AIROF electrodes to deliver charge levels considered necessary for neural stimulation. Potential pulsing for 100-200 cycles was sufficient to achieve charge injection levels of 2.5 mC cm (50 nC/phase in a biphasic pulse) in PBS with 2000 µm iridium probes. Increasing the electrode surface area to 3000 µm and 4000 µm significantly increased charge-injection capacity, reduced the driving voltage required to deliver a fixed amount of charge, and reduced polarization of the electrodes during constant-current pulsing.

SIGNIFICANCE

This study establishes methods for choosing an activation protocol and a desired GSA for three-dimensional iridium electrodes suitable for neural tissue insertion and stimulation, and provides guidelines for evaluating electrochemical performance of AIROF using model saline solutions.

摘要

目的

氧化铱薄膜通常用作神经器件中的高注入电荷电极材料。然而,很少有研究对材料性能与薄膜厚度进行深入评估,特别是在中性 pH 电解质溶液中,在三维(而非平面)金属表面上生长的薄膜。此外,很少有研究调查使用活性氧化铱(AIROF)电极进行恒流刺激的驱动电压要求,这将是未来在无线供电神经器件中使用的关键限制。

方法

在本研究中,通过在室温磷酸盐缓冲盐水(pH7.1-7.3)中重复电位脉冲来激活铱微丝探针。在三种不同的电解质条件下记录了具有不同几何表面积(GSA)的探针的电化学测量结果,因为 AIROF 厚度的增加会导致其厚度增加。

主要结果

在脉冲间隔期间保持阳极电位偏置对于 AIROF 电极输送被认为对神经刺激有必要的电荷水平是必需的。在 PBS 中,用 2000 µm 的铱探针进行 100-200 个循环的脉冲即可实现 2.5 mC cm 的电荷注入水平(双相脉冲中的每个相位为 50 nC)。将电极表面积增加到 3000 µm 和 4000 µm 显著增加了电荷注入容量,降低了输送固定电荷量所需的驱动电压,并减少了恒流脉冲期间电极的极化。

意义

本研究建立了用于选择激活方案和适用于神经组织插入和刺激的三维铱电极所需 GSA 的方法,并为使用模型盐溶液评估 AIROF 的电化学性能提供了指导。

相似文献

1
Activated iridium oxide film (AIROF) electrodes for neural tissue stimulation.
J Neural Eng. 2020 Oct 13;17(5):056001. doi: 10.1088/1741-2552/abb9bf.
2
Over-pulsing degrades activated iridium oxide films used for intracortical neural stimulation.
J Neurosci Methods. 2004 Aug 30;137(2):141-50. doi: 10.1016/j.jneumeth.2004.02.019.
5
Assessing polarization of AIROF microelectrodes.
Annu Int Conf IEEE Eng Med Biol Soc. 2007;2007:1726-9. doi: 10.1109/IEMBS.2007.4352643.
6
In vitro and in vivo charge capacity of AIROF microelectrodes.
Conf Proc IEEE Eng Med Biol Soc. 2006;2006:886-9. doi: 10.1109/IEMBS.2006.259869.
7
Chronic stability of activated iridium oxide film voltage transients from wireless floating microelectrode arrays.
Front Neurosci. 2022 Aug 8;16:876032. doi: 10.3389/fnins.2022.876032. eCollection 2022.
8
In vivo and in vitro differences in the charge-injection and electrochemical properties of iridium oxide electrodes.
Conf Proc IEEE Eng Med Biol Soc. 2006;2006:882-5. doi: 10.1109/IEMBS.2006.259654.
9
Neural electrode degradation from continuous electrical stimulation: comparison of sputtered and activated iridium oxide.
J Neurosci Methods. 2010 Jan 30;186(1):8-17. doi: 10.1016/j.jneumeth.2009.10.016. Epub 2009 Oct 28.
10
Charge injection characteristics of sputtered ruthenium oxide electrodes for neural stimulation and recording.
J Biomed Mater Res B Appl Biomater. 2022 Jan;110(1):229-238. doi: 10.1002/jbm.b.34906. Epub 2021 Jul 14.

引用本文的文献

1
Fabrication and Dose-Response Simulation of Soft Dual-Sided Deep Brain Stimulation Electrode.
Micromachines (Basel). 2025 Aug 18;16(8):945. doi: 10.3390/mi16080945.
2
The Role of Scalp EEG Recordings During Cortical Visual Prosthesis Testing.
Artif Organs. 2025 May 27. doi: 10.1111/aor.15023.
4
Bioelectronic Medicine: a multidisciplinary roadmap from biophysics to precision therapies.
Front Integr Neurosci. 2024 Feb 19;18:1321872. doi: 10.3389/fnint.2024.1321872. eCollection 2024.
5
Bioelectronic Neural Interfaces: Improving Neuromodulation Through Organic Conductive Coatings.
Adv Sci (Weinh). 2024 Jul;11(27):e2306275. doi: 10.1002/advs.202306275. Epub 2023 Dec 19.
6
Electrocatalytic on-site oxygenation for transplanted cell-based-therapies.
Nat Commun. 2023 Nov 9;14(1):7019. doi: 10.1038/s41467-023-42697-2.
7
Direct laser writing of 3D electrodes on flexible substrates.
Nat Commun. 2023 Jun 17;14(1):3610. doi: 10.1038/s41467-023-39152-7.
8
Plasma-Assisted Atomic Layer Deposition of IrO for Neuroelectronics.
Nanomaterials (Basel). 2023 Mar 8;13(6):976. doi: 10.3390/nano13060976.
10
Flexible IrO neural electrode for mouse vagus nerve stimulation.
Acta Biomater. 2023 Mar 15;159:394-409. doi: 10.1016/j.actbio.2023.01.026. Epub 2023 Jan 17.

本文引用的文献

1
Electrical Microstimulation of Visual Cerebral Cortex Elevates Psychophysical Detection Thresholds.
eNeuro. 2018 Oct 30;5(5). doi: 10.1523/ENEURO.0311-18.2018. eCollection 2018 Sep-Oct.
2
Tissue damage thresholds during therapeutic electrical stimulation.
J Neural Eng. 2016 Apr;13(2):021001. doi: 10.1088/1741-2560/13/2/021001. Epub 2016 Jan 20.
3
Chronic in-vivo testing of a 16-channel implantable wireless neural stimulator.
Annu Int Conf IEEE Eng Med Biol Soc. 2015 Aug;2015:1017-20. doi: 10.1109/EMBC.2015.7318537.
4
Excimer laser deinsulation of Parylene-C on iridium for use in an activated iridium oxide film-coated Utah electrode array.
J Neurosci Methods. 2013 Apr 30;215(1):78-87. doi: 10.1016/j.jneumeth.2013.02.010. Epub 2013 Feb 28.
5
Intrinsic activation of iridium electrodes over a wireless link.
Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:2788-91. doi: 10.1109/EMBC.2012.6346543.
6
Neuronal loss due to prolonged controlled-current stimulation with chronically implanted microelectrodes in the cat cerebral cortex.
J Neural Eng. 2010 Jun;7(3):036005. doi: 10.1088/1741-2560/7/3/036005. Epub 2010 May 11.
7
Neural electrode degradation from continuous electrical stimulation: comparison of sputtered and activated iridium oxide.
J Neurosci Methods. 2010 Jan 30;186(1):8-17. doi: 10.1016/j.jneumeth.2009.10.016. Epub 2009 Oct 28.
8
Neuronal cell growth on iridium oxide.
Biomaterials. 2010 Feb;31(6):1055-67. doi: 10.1016/j.biomaterials.2009.10.029. Epub 2009 Oct 25.
9
Audiologic outcomes with the penetrating electrode auditory brainstem implant.
Otol Neurotol. 2008 Dec;29(8):1147-54. doi: 10.1097/MAO.0b013e31818becb4.
10
Neural stimulation and recording electrodes.
Annu Rev Biomed Eng. 2008;10:275-309. doi: 10.1146/annurev.bioeng.10.061807.160518.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验