Suppr超能文献

用于神经电子学的氧化铱的等离子体辅助原子层沉积

Plasma-Assisted Atomic Layer Deposition of IrO for Neuroelectronics.

作者信息

Di Palma Valerio, Pianalto Andrea, Perego Michele, Tallarida Graziella, Codegoni Davide, Fanciulli Marco

机构信息

Department of Materials Science, University of Milano Bicocca, Via R. Cozzi 55, 20125 Milano, Italy.

CNR-IMM Unit of Agrate Brianza, Via C. Olivetti 2, 20864 Agrate Brianza, Italy.

出版信息

Nanomaterials (Basel). 2023 Mar 8;13(6):976. doi: 10.3390/nano13060976.

Abstract

In vitro and in vivo stimulation and recording of neuron action potential is currently achieved with microelectrode arrays, either in planar or 3D geometries, adopting different materials and strategies. IrO is a conductive oxide known for its excellent biocompatibility, good adhesion on different substrates, and charge injection capabilities higher than noble metals. Atomic layer deposition (ALD) allows excellent conformal growth, which can be exploited on 3D nanoelectrode arrays. In this work, we disclose the growth of nanocrystalline rutile IrO at T = 150 °C adopting a new plasma-assisted ALD (PA-ALD) process. The morphological, structural, physical, chemical, and electrochemical properties of the IrO thin films are reported. To the best of our knowledge, the electrochemical characterization of the electrode/electrolyte interface in terms of charge injection capacity, charge storage capacity, and double-layer capacitance for IrO grown by PA-ALD was not reported yet. IrO grown on PtSi reveals a double-layer capacitance () above 300 µF∙cm, and a charge injection capacity of 0.22 ± 0.01 mC∙cm for an electrode of 1.0 cm, confirming IrO grown by PA-ALD as an excellent material for neuroelectronic applications.

摘要

目前,采用不同材料和策略,通过平面或三维几何结构的微电极阵列来实现体外和体内神经元动作电位的刺激与记录。氧化铱(IrO)是一种导电氧化物,以其优异的生物相容性、在不同基底上的良好附着力以及高于贵金属的电荷注入能力而闻名。原子层沉积(ALD)能够实现出色的保形生长,可应用于三维纳米电极阵列。在这项工作中,我们公开了采用一种新的等离子体辅助原子层沉积(PA-ALD)工艺在150°C下生长纳米晶金红石型IrO的方法。报告了IrO薄膜的形态、结构、物理、化学和电化学性质。据我们所知,尚未有关于通过PA-ALD生长的IrO在电荷注入容量、电荷存储容量和双层电容方面的电极/电解质界面的电化学表征的报道。在PtSi上生长的IrO对于1.0平方厘米的电极显示出高于300 μF∙cm²的双层电容()以及0.22±0.01 mC∙cm²的电荷注入容量,证实通过PA-ALD生长的IrO是神经电子应用的优异材料。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/26d8/10052997/8f63177923d8/nanomaterials-13-00976-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验