Akkerman Quinten A, Bladt Eva, Petralanda Urko, Dang Zhiya, Sartori Emanuela, Baranov Dmitry, Abdelhady Ahmed L, Infante Ivan, Bals Sara, Manna Liberato
Nanochemistry Department, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy.
Dipartimento di Chimica e Chimica Industriale, Università degli Studi di Genova, Via Dodecaneso, 31, 16146 Genova, Italy.
Chem Mater. 2019 Mar 26;31(6):2182-2190. doi: 10.1021/acs.chemmater.9b00489. Epub 2019 Mar 4.
The vast majority of lead halide perovskite (LHP) nanocrystals (NCs) are currently based on either a single halide composition (CsPbCl, CsPbBr, and CsPbI) or an alloyed mixture of bromide with either Cl or I [i.e., CsPb(Br:Cl) or CsPb(Br:I)]. In this work, we present the synthesis as well as a detailed optical and structural study of two halide alloying cases that have not previously been reported for LHP NCs: CsPbICl NCs and triple halide CsPb(Cl:Br:I) NCs. In the case of CsPbICl, we observe for the first time NCs with a fully inorganic Ruddlesden-Popper phase (RPP) crystal structure. Unlike the well-explored organic-inorganic RPP, here, the RPP formation is triggered by the size difference between the halide ions. These NCs exhibit a strong excitonic absorption, albeit with a weak photoluminescence quantum yield (PLQY). In the case of the triple halide CsPb(Cl:Br:I) composition, the NCs comprise a CsPbBrCl perovskite crystal lattice with only a small amount of incorporated iodide, which segregates at RPP planes' interfaces within the CsPb(Cl:Br:I) NCs. Supported by density functional theory calculations and postsynthetic surface treatments to enhance the PLQY, we show that the combination of iodide segregation and defective RPP interfaces are most likely linked to the strong PL quenching observed in these nanostructures. In summary, this work demonstrates the limits of halide alloying in LHP NCs because a mixture that contains halide ions of very different sizes leads to the formation of defective RPP interfaces and a severe quenching of LHP NC's optical properties.
目前,绝大多数铅卤化物钙钛矿(LHP)纳米晶体(NCs)要么基于单一卤化物组成(CsPbCl、CsPbBr和CsPbI),要么是溴化物与Cl或I的合金混合物[即CsPb(Br:Cl)或CsPb(Br:I)]。在这项工作中,我们展示了两种此前未报道过的LHP NCs卤化物合金化情况的合成方法以及详细的光学和结构研究:CsPbICl NCs和三元卤化物CsPb(Cl:Br:I) NCs。对于CsPbICl,我们首次观察到具有完全无机的Ruddlesden-Popper相(RPP)晶体结构的NCs。与研究充分的有机-无机RPP不同,这里RPP的形成是由卤离子之间的尺寸差异触发的。这些NCs表现出强烈的激子吸收,尽管光致发光量子产率(PLQY)较弱。对于三元卤化物CsPb(Cl:Br:I)组成,NCs由CsPbBrCl钙钛矿晶格组成,仅含有少量掺入的碘化物,这些碘化物在CsPb(Cl:Br:I) NCs内的RPP平面界面处偏析。在密度泛函理论计算和合成后表面处理以提高PLQY的支持下,我们表明碘化物偏析和有缺陷的RPP界面的组合很可能与在这些纳米结构中观察到的强烈PL猝灭有关。总之,这项工作证明了LHP NCs中卤化物合金化的局限性,因为含有尺寸差异非常大的卤离子的混合物会导致形成有缺陷的RPP界面,并严重猝灭LHP NCs的光学性质。