文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Advanced delivery strategies facilitating oral absorption of heparins.

作者信息

Fang Guihua, Tang Bo

机构信息

School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong 226001, China.

出版信息

Asian J Pharm Sci. 2020 Jul;15(4):449-460. doi: 10.1016/j.ajps.2019.11.006. Epub 2020 Jan 9.


DOI:10.1016/j.ajps.2019.11.006
PMID:32952668
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7486512/
Abstract

Heparins show great anticoagulant effect with few side effects, and are administered by subcutaneous or intravenous route in clinics. To improve patient compliance, oral administration is an alternative route. Nonetheless, oral administration of heparins still faces enormous challenges due to the multiple obstacles. This review briefly analyzes a series of barriers ranging from poorly physicochemical properties of heparins, to harsh biological barriers including gastrointestinal degradation and pre-systemic metabolism. Moreover, several approaches have been developed to overcome these obstacles, such as improving stability of heparins in the gastrointestinal tract, enhancing the intestinal epithelia permeability and facilitating lymphatic delivery of heparins. Overall, this review aims to provide insights concerning advanced delivery strategies facilitating oral absorption of heparins.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4bf/7486512/051847e20927/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4bf/7486512/80bd2a2c1d6f/fx1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4bf/7486512/43507aa72a28/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4bf/7486512/467111178cf5/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4bf/7486512/98787f198768/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4bf/7486512/977af1080f7c/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4bf/7486512/68840014d40b/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4bf/7486512/051847e20927/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4bf/7486512/80bd2a2c1d6f/fx1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4bf/7486512/43507aa72a28/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4bf/7486512/467111178cf5/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4bf/7486512/98787f198768/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4bf/7486512/977af1080f7c/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4bf/7486512/68840014d40b/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4bf/7486512/051847e20927/gr6.jpg

相似文献

[1]
Advanced delivery strategies facilitating oral absorption of heparins.

Asian J Pharm Sci. 2020-7

[2]
Strategies to Overcome Heparins' Low Oral Bioavailability.

Pharmaceuticals (Basel). 2016-6-29

[3]
Emerging integrated nanohybrid drug delivery systems to facilitate the intravenous-to-oral switch in cancer chemotherapy.

J Control Release. 2014-1-2

[4]
Oral delivery of peptide drugs: barriers and developments.

BioDrugs. 2005

[5]
A review of advanced oral drug delivery technologies facilitating the protection and absorption of protein and peptide molecules.

Biotechnol Adv. 2014-8-3

[6]
Improving oral absorption via drug-loaded nanocarriers: absorption mechanisms, intestinal models and rational fabrication.

Curr Drug Metab. 2013-1

[7]
Lipid-Based Nanocarriers for Lymphatic Transportation.

AAPS PharmSciTech. 2019-1-23

[8]
Nanocarriers: a general strategy for enhancement of oral bioavailability of poorly absorbed or pre-systemically metabolized drugs.

Curr Drug Metab. 2010-2

[9]
[Delivery system design for improvement of intestinal absorption of peptide drugs].

Yakugaku Zasshi. 1997-7

[10]
Oral peptide delivery: Translational challenges due to physiological effects.

J Control Release. 2018-8-23

引用本文的文献

[1]
Sustainable Utilization of Crocodile Byproducts: Extraction and Enzymatic Modification of Oil.

ACS Omega. 2025-8-4

[2]
Bioinspired micro-structured fibers for biomedical applications.

Bioact Mater. 2025-7-14

[3]
Emerging for non-invasive heparin delivery systems: recent advances, barriers, solutions, and applicability.

Saudi Pharm J. 2025-6-12

[4]
Recent progress and challenges of MOF-based nanocomposites in bioimaging, biosensing and biocarriers for drug delivery.

Nanoscale Adv. 2024-3-6

[5]
Designing Synthetic, Sulfated Glycosaminoglycan Mimetics That Are Orally Bioavailable and Exhibiting Anticancer Activity.

J Med Chem. 2023-1-26

[6]
Not Just Anticoagulation-New and Old Applications of Heparin.

Molecules. 2022-10-17

[7]
Harnessing Clinical Trial and Real-World Data Towards an Understanding of Sex Effects on Drug Pharmacokinetics, Pharmacodynamics and Efficacy.

Front Pharmacol. 2022-6-6

[8]
Crosslinking of dialdehyde heparin: a new strategy for improving the anticoagulant properties of porcine acellular dermal matrix.

RSC Adv. 2022-2-28

[9]
Chitosan/Alginate Nanoparticles for the Enhanced Oral Antithrombotic Activity of Clam Heparinoid from the Clam .

Mar Drugs. 2022-2-12

[10]
Heparin and Its Derivatives: Challenges and Advances in Therapeutic Biomolecules.

Int J Mol Sci. 2021-9-29

本文引用的文献

[1]
Alginate-chitosan coated layered double hydroxide nanocomposites for enhanced oral vaccine delivery.

J Colloid Interface Sci. 2019-8-9

[2]
Functional lipid polymeric nanoparticles for oral drug delivery: Rapid mucus penetration and improved cell entry and cellular transport.

Nanomedicine. 2019-8-1

[3]
The Intestinal Lymphatic System: Functions and Metabolic Implications.

Cell Mol Gastroenterol Hepatol. 2018-12-14

[4]
Chitosan based polymer-lipid hybrid nanoparticles for oral delivery of enoxaparin.

Int J Pharm. 2018-6-1

[5]
Antidotes for the direct oral anticoagulants: What news?

Thromb Res. 2018-4

[6]
Direct oral anticoagulant (DOAC) versus low-molecular-weight heparin (LMWH) for treatment of cancer associated thrombosis (CAT): A systematic review and meta-analysis.

Thromb Res. 2018-3-2

[7]
Novel Solid Lipid Nanoparticle with Endosomal Escape Function for Oral Delivery of Insulin.

ACS Appl Mater Interfaces. 2018-3-8

[8]
Effects of surfactant-based permeation enhancers on mannitol permeability, histology, and electrogenic ion transport responses in excised rat colonic mucosae.

Int J Pharm. 2018-1-16

[9]
Direct oral anticoagulants: An update.

Med Clin (Barc). 2017-12-30

[10]
Glucose and amino acid in enterocyte: absorption, metabolism and maturation.

Front Biosci (Landmark Ed). 2018-3-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索