School of Information Communication Engineering, Chosun University, 309 Pilmun-Daero, Dong-Gu, Gwangju 61452, Republic of Korea.
National Research Center for Dementia, Chosun University, 309 Pilmun-Daero, Dong-Gu, Gwangju 61452, Republic of Korea.
J Healthc Eng. 2020 Aug 31;2020:3743171. doi: 10.1155/2020/3743171. eCollection 2020.
Alzheimer's disease (AD) is one of the most common neurodegenerative illnesses (dementia) among the elderly. Recently, researchers have developed a new method for the instinctive analysis of AD based on machine learning and its subfield, deep learning. Recent state-of-the-art techniques consider multimodal diagnosis, which has been shown to achieve high accuracy compared to a unimodal prognosis. Furthermore, many studies have used structural magnetic resonance imaging (MRI) to measure brain volumes and the volume of subregions, as well as to search for diffuse changes in white/gray matter in the brain. In this study, T1-weighted structural MRI was used for the early classification of AD. MRI results in high-intensity visible features, making preprocessing and segmentation easy. To use this image modality, we acquired four types of datasets from each dataset's server. In this work, we downloaded 326 subjects from the National Research Center for Dementia homepage, 123 subjects from the Alzheimer's Disease Neuroimaging Initiative (ADNI) homepage, 121 subjects from the Alzheimer's Disease Repository Without Borders homepage, and 131 subjects from the National Alzheimer's Coordinating Center homepage. In our experiment, we used the multiatlas label propagation with expectation-maximization-based refinement segmentation method. We segmented the images into 138 anatomical morphometry images (in which 40 features belonged to subcortical volumes and the remaining 98 features belonged to cortical thickness). The entire dataset was split into a 70 : 30 (training and testing) ratio before classifying the data. A principal component analysis was used for dimensionality reduction. Then, the support vector machine radial basis function classifier was used for classification between two groups-AD versus health control (HC) and early mild cognitive impairment (MCI) (EMCI) versus late MCI (LMCI). The proposed method performed very well for all four types of dataset. For instance, for the AD versus HC group, the classifier achieved an area under curve (AUC) of more than 89% for each dataset. For the EMCI versus LMCI group, the classifier achieved an AUC of more than 80% for every dataset. Moreover, we also calculated Cohen kappa and Jaccard index statistical values for all datasets to evaluate the classification reliability. Finally, we compared our results with those of recently published state-of-the-art methods.
阿尔茨海默病(AD)是老年人中最常见的神经退行性疾病(痴呆)之一。最近,研究人员基于机器学习及其子领域深度学习开发了一种用于 AD 的本能分析的新方法。最新的技术考虑了多模态诊断,与单模态预后相比,它已被证明具有更高的准确性。此外,许多研究使用结构磁共振成像(MRI)来测量脑体积和子区域的体积,以及寻找脑内白质/灰质的弥漫性变化。在这项研究中,使用 T1 加权结构 MRI 对 AD 进行早期分类。MRI 产生高强度可见特征,使预处理和分割变得容易。为了使用这种图像模式,我们从每个数据集的服务器获取四种类型的数据集。在这项工作中,我们从国家痴呆症研究中心主页下载了 326 个受试者,从阿尔茨海默病神经影像学倡议(ADNI)主页下载了 123 个受试者,从无边界阿尔茨海默病知识库主页下载了 121 个受试者,从国家阿尔茨海默病协调中心主页下载了 131 个受试者。在我们的实验中,我们使用了基于期望最大化的多图谱标签传播细化分割方法。我们将图像分割成 138 个解剖形态学图像(其中 40 个特征属于皮质下体积,其余 98 个特征属于皮质厚度)。在对数据进行分类之前,将整个数据集分为 70:30(训练和测试)的比例。进行主成分分析以实现降维。然后,使用支持向量机径向基函数分类器对两组进行分类-AD 与健康对照(HC)和早期轻度认知障碍(MCI)(EMCI)与晚期 MCI(LMCI)。所提出的方法在所有四种类型的数据集上都表现得非常出色。例如,对于 AD 与 HC 组,对于每个数据集,分类器的曲线下面积(AUC)都超过 89%。对于 EMCI 与 LMCI 组,对于每个数据集,分类器的 AUC 都超过 80%。此外,我们还计算了所有数据集的 Cohen kappa 和 Jaccard 指数统计值,以评估分类的可靠性。最后,我们将结果与最近发表的最先进方法进行了比较。
J Healthc Eng. 2019-3-3
Magn Reson Imaging. 2019-7-4
Biomed Tech (Berl). 2018-7-26
Ann Palliat Med. 2021-9
J Biomed Phys Eng. 2022-12-1
J Healthc Eng. 2019-3-3
Front Aging Neurosci. 2018-11-29
Alzheimers Dement. 2018-4
Med Image Anal. 2014-12-24
IEEE Trans Biomed Eng. 2015-4