Suppr超能文献

在推断社会网络时如何做出方法学决策。

How to make methodological decisions when inferring social networks.

作者信息

Ferreira André C, Covas Rita, Silva Liliana R, Esteves Sandra C, Duarte Inês F, Fortuna Rita, Theron Franck, Doutrelant Claire, Farine Damien R

机构信息

Centre d'Ecologie Fonctionnelle et Evolutive Univ Montpellier CNRS EPHE, IRD Univ Paul-Valery Montpellier 3 Montpellier France.

CIBIO-InBio Research Centre in Biodiversity and Genetic Resources Vairão Portugal.

出版信息

Ecol Evol. 2020 Aug 7;10(17):9132-9143. doi: 10.1002/ece3.6568. eCollection 2020 Sep.

Abstract

Social network analyses allow studying the processes underlying the associations between individuals and the consequences of those associations. Constructing and analyzing social networks can be challenging, especially when designing new studies as researchers are confronted with decisions about how to collect data and construct networks, and the answers are not always straightforward. The current lack of guidance on building a social network for a new study system might lead researchers to try several different methods and risk generating false results arising from multiple hypotheses testing. Here, we suggest an approach for making decisions when starting social network research in a new study system that avoids the pitfall of multiple hypotheses testing. We argue that best edge definition for a network is a decision that can be made using a priori knowledge about the species and that is independent from the hypotheses that the network will ultimately be used to evaluate. We illustrate this approach with a study conducted on a colonial cooperatively breeding bird, the sociable weaver. We first identified two ways of collecting data using different numbers of feeders and three ways to define associations among birds. We then evaluated which combination of data collection and association definition maximized (a) the assortment of individuals into previously known "breeding groups" (birds that contribute toward the same nest and maintain cohesion when foraging) and (b) socially differentiated relationships (more strong and weak relationships than expected by chance). This evaluation of different methods based on a priori knowledge of the study species can be implemented in a diverse array of study systems and makes the case for using existing, biologically meaningful knowledge about a system to help navigate the myriad of methodological decisions about data collection and network inference.

摘要

社会网络分析有助于研究个体之间关联背后的过程以及这些关联所产生的后果。构建和分析社会网络可能具有挑战性,尤其是在设计新研究时,因为研究人员面临着如何收集数据和构建网络的决策,而答案并非总是一目了然。目前在为新的研究系统构建社会网络方面缺乏指导,这可能会导致研究人员尝试几种不同的方法,并面临因多重假设检验而产生错误结果的风险。在此,我们提出一种在新的研究系统中开展社会网络研究时进行决策的方法,以避免多重假设检验的陷阱。我们认为,网络的最佳边定义是一个可以根据对物种的先验知识做出的决策,并且独立于网络最终将用于评估的假设。我们以对群居性合作繁殖鸟类社交织雀的一项研究为例来说明这种方法。我们首先确定了两种使用不同数量喂食器收集数据的方法以及三种定义鸟类之间关联的方法。然后,我们评估了哪种数据收集和关联定义的组合能够使(a)个体分配到先前已知的“繁殖群体”(为同一巢穴做出贡献且在觅食时保持凝聚力的鸟类)的分类最大化,以及(b)社会分化关系(比随机预期的更多的强关系和弱关系)最大化。基于对研究物种的先验知识对不同方法进行的这种评估可以在各种各样的研究系统中实施,并为利用关于一个系统的现有生物学意义知识来帮助应对关于数据收集和网络推断的众多方法学决策提供了依据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bcf1/7487238/35b59581b944/ECE3-10-9132-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验