Galán-González Alejandro, Sivan Aswathi K, Hernández-Ferrer Javier, Bowen Leon, Di Mario Lorenzo, Martelli Faustino, Benito Ana M, Maser Wolfgang K, Chaudhry Mujeeb Ullah, Gallant Andrew, Zeze Dagou A, Atkinson Del
Department of Engineering, Durham University, South Rd., Durham DH1 3LE, U.K.
Department of Physics, Durham University, South Rd., Durham DH1 3LE, U.K.
ACS Appl Nano Mater. 2020 Aug 28;3(8):7781-7788. doi: 10.1021/acsanm.0c01325. Epub 2020 Jul 15.
Developing highly efficient and stable photoelectrochemical (PEC) water-splitting electrodes via inexpensive, liquid phase processing is one of the key challenges for the conversion of solar energy into hydrogen for sustainable energy production. ZnO represents one the most suitable semiconductor metal oxide alternatives because of its high electron mobility, abundance, and low cost, although its performance is limited by its lack of absorption in the visible spectrum and reduced charge separation and charge transfer efficiency. Here, we present a solution-processed water-splitting photoanode based on Co-doped ZnO nanorods (NRs) coated with a transparent functionalizing metal-organic framework (MOF). The light absorption of the ZnO NRs is engineered toward the visible region by Co-doping, while the MOF significantly improves the stability and charge separation and transfer properties of the NRs. This synergetic combination of doping and nanoscale surface functionalization boosts the current density and functional lifetime of the photoanodes while achieving an unprecedented incident photon to current efficiency (IPCE) of 75% at 350 nm, which is over 2 times that of pristine ZnO. A theoretical model and band structure for the core-shell nanostructure is provided, highlighting how this nanomaterial combination provides an attractive pathway for the design of robust and highly efficient semiconductor-based photoanodes that can be translated to other semiconducting oxide systems.
通过廉价的液相处理开发高效稳定的光电化学(PEC)水分解电极,是将太阳能转化为氢能以实现可持续能源生产的关键挑战之一。氧化锌(ZnO)因其高电子迁移率、丰富性和低成本,是最合适的半导体金属氧化物替代品之一,尽管其性能受到在可见光谱中缺乏吸收以及电荷分离和电荷转移效率降低的限制。在此,我们展示了一种基于涂覆有透明功能化金属有机框架(MOF)的钴掺杂氧化锌纳米棒(NRs)的溶液处理水分解光阳极。通过钴掺杂,将氧化锌纳米棒的光吸收设计到可见光区域,而金属有机框架显著提高了纳米棒的稳定性以及电荷分离和转移性能。这种掺杂与纳米级表面功能化的协同组合提高了光阳极的电流密度和功能寿命,同时在350纳米处实现了前所未有的75%的入射光子到电流效率(IPCE),这是原始氧化锌的两倍多。提供了核壳纳米结构的理论模型和能带结构,突出了这种纳米材料组合如何为设计坚固且高效的基于半导体的光阳极提供了一条有吸引力的途径,这种光阳极可应用于其他半导体氧化物系统。