Department of Physics, Durham University, South Rd, Durham, DH1 3LE, United Kingdom. Department of Engineering, Durham University, South Rd, Durham, DH1 3LE, United Kingdom.
Nanotechnology. 2019 Jul 26;30(30):305602. doi: 10.1088/1361-6528/ab186a. Epub 2019 Apr 11.
Semiconducting nanowires (NWs) offer exciting prospects for a wide range of technological applications. The translation of NW science into technology requires reliable high quality large volume production. This study provides an in-depth investigation of the parameters using an atomic layer deposition system to grow zinc oxide (ZnO) seed layers followed by the chemical bath deposition (CBD) of ZnO NWs to demonstrate the low-cost production of uniform single crystal wurtzite phase ZnO NWs that is scalable to large area substrates. The seed layer texture and the morphology of the NWs grown were systematically investigated using atomic force microscopy as a function of the seed layer deposition parameters. It is shown that the NWs growth orientation can be controlled by tuning the seed layer deposition parameters while maintaining the same CBD conditions. Likewise, the diameters and the surface densities of the NWs varied from 23 to 56 nm and 40 to 327 NWs μm, respectively. Significantly, the relationship between the seed layer structure and the NW density indicates a clear correlation between the density of seed layer surface features and the resulting surface NW density of NWs grown.
半导体纳米线 (NWs) 为广泛的技术应用提供了令人兴奋的前景。将 NW 科学转化为技术需要可靠的高质量大规模生产。本研究使用原子层沉积系统深入研究了参数,以生长氧化锌 (ZnO) 种子层,然后进行化学浴沉积 (CBD) 生长 ZnO NWs,从而展示了低成本生产均匀单晶纤锌矿相 ZnO NWs 的能力,这种方法可扩展到大面积衬底。使用原子力显微镜系统地研究了种子层纹理和生长的 NWs 的形态作为种子层沉积参数的函数。结果表明,通过调整种子层沉积参数可以控制 NW 的生长方向,同时保持相同的 CBD 条件。同样,NW 的直径和表面密度分别从 23nm 到 56nm 和 40NWsμm 到 327NWsμm 变化。重要的是,种子层结构与 NW 密度之间的关系表明,种子层表面特征的密度与生长的 NW 表面 NW 密度之间存在明显的相关性。