Mclean Hospital, Harvard University, Cambridge, Massachusetts, USA.
Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.
Am J Med Genet B Neuropsychiatr Genet. 2020 Dec;183(8):454-463. doi: 10.1002/ajmg.b.32823. Epub 2020 Sep 21.
Genetic signal detection in genome-wide association studies (GWAS) is enhanced by pooling small signals from multiple Single Nucleotide Polymorphism (SNP), for example, across genes and pathways. Because genes are believed to influence traits via gene expression, it is of interest to combine information from expression Quantitative Trait Loci (eQTLs) in a gene or genes in the same pathway. Such methods, widely referred to as transcriptomic wide association studies (TWAS), already exist for gene analysis. Due to the possibility of eliminating most of the confounding effects of linkage disequilibrium (LD) from TWAS gene statistics, pathway TWAS methods would be very useful in uncovering the true molecular basis of psychiatric disorders. However, such methods are not yet available for arbitrarily large pathways/gene sets. This is possibly due to the quadratic (as a function of the number of SNPs) computational burden for computing LD across large chromosomal regions. To overcome this obstacle, we propose JEPEGMIX2-P, a novel TWAS pathway method that (a) has a linear computational burden, (b) uses a large and diverse reference panel (33 K subjects), (c) is competitive (adjusts for background enrichment in gene TWAS statistics), and (d) is applicable as-is to ethnically mixed-cohorts. To underline its potential for increasing the power to uncover genetic signals over the commonly used nontranscriptomics methods, for example, MAGMA, we applied JEPEGMIX2-P to summary statistics of most large meta-analyses from Psychiatric Genetics Consortium (PGC). While our work is just the very first step toward clinical translation of psychiatric disorders, PGC anorexia results suggest a possible avenue for treatment.
全基因组关联研究(GWAS)中的遗传信号检测通过汇集来自多个单核苷酸多态性(SNP)的小信号得到增强,例如跨越基因和途径。由于基因被认为通过基因表达影响性状,因此将同一途径中基因或基因的表达定量性状基因座(eQTL)信息结合起来是很有意义的。这种方法,通常被称为转录组全基因组关联研究(TWAS),已经存在于基因分析中。由于 TWAS 基因统计数据中可以消除大多数连锁不平衡(LD)的混杂影响,因此途径 TWAS 方法将非常有助于揭示精神障碍的真正分子基础。然而,目前还没有针对任意大的途径/基因集的方法。这可能是由于计算大型染色体区域中 LD 的计算负担为二次方(作为 SNP 数量的函数)所致。为了克服这一障碍,我们提出了 JEPEGMIX2-P,这是一种新颖的 TWAS 途径方法,(a)具有线性计算负担,(b)使用大型和多样化的参考面板(33K 个主题),(c)具有竞争力(调整基因 TWAS 统计中的背景富集),并且(d)可以原样应用于混合种族队列。为了强调其相对于 MAGMA 等常用非转录组学方法在揭示遗传信号方面增加功效的潜力,我们将 JEPEGMIX2-P 应用于精神疾病遗传学联盟(PGC)的大多数大型荟萃分析的汇总统计数据。虽然我们的工作只是精神障碍临床转化的第一步,但 PGC 厌食症的结果表明了一种可能的治疗途径。