Suppr超能文献

重新审视高尔夫挥杆枢纽路径的内斯比特和麦金尼斯优化模型。

Revisiting the Nesbit and McGinnis optimization model of the golf swing hub path.

作者信息

O'brien Benjamin, Juhas Brett, Bieńkiewicz Marta, Bourdin Christophe

机构信息

University of Aix-Marseille, CNRS, ISM, Marseille, France -

University of Aix-Marseille, CNRS, ISM, Marseille, France.

出版信息

J Sports Med Phys Fitness. 2020 Aug;60(8):1089-1100. doi: 10.23736/S0022-4707.20.10733-3.

Abstract

BACKGROUND

This article details the development of adopting the Nesbit and McGinnis model of the golf swing as a starting point for studying golf performance optimization. The model was selected as it presents an opportunity to examine how non-naïve participants can learn and improve their swing mechanics, which could prove valuable in studying human learning in sports, rehabilitation, and re-education.

METHODS

Kinematic data was acquired in laboratory and real-world environments using the motion capture systems Qualysis and CodaMotion CX-Sport, respectively. In the early stages of developing the model in MATLAB, we identified limitations in the Nesbit and McGinnis methodology, including the filtering techniques applied to swing vectors and the selection of swing variables and the solutions to their boundary conditions solutions during the downswing. By addressing these issues, our goal was to revise the model and make it more robust and capable of optimizing the impact velocities from a wider variety of subjects with varying swing mechanics.

RESULTS

By increasing the cutoff frequency used to filter the swing vectors and expanding the swing variable polynomial equations, we found it was possible for all participants to increase their club head velocity at impact while respecting their unique kinematic limitations. The manner of the kinematic changes and the percent of velocity improvement are participant dependent.

CONCLUSIONS

Our study showed that the observed and optimized hub paths differed among participants, which suggests participants might also differ in their approaches and capacities to adopt the latter.

摘要

背景

本文详细介绍了采用内斯比特和麦金尼斯高尔夫挥杆模型作为研究高尔夫球表现优化起点的发展过程。选择该模型是因为它提供了一个机会来研究非新手参与者如何学习和改进他们的挥杆力学,这在研究运动、康复和再教育中的人类学习方面可能具有价值。

方法

分别使用运动捕捉系统Qualysis和CodaMotion CX-Sport在实验室和现实环境中获取运动学数据。在MATLAB中开发该模型的早期阶段,我们发现了内斯比特和麦金尼斯方法中的局限性,包括应用于挥杆向量的滤波技术、挥杆变量的选择以及下挥杆过程中其边界条件解的求解。通过解决这些问题,我们的目标是修订该模型,使其更强大,并能够优化来自具有不同挥杆力学的更广泛受试者的击球速度。

结果

通过提高用于滤波挥杆向量的截止频率并扩展挥杆变量多项式方程,我们发现所有参与者都有可能在尊重其独特运动学限制的同时提高他们的击球时杆头速度。运动学变化的方式和速度提高的百分比因参与者而异。

结论

我们的研究表明,观察到的和优化后的杆头路径在参与者之间存在差异,这表明参与者在采用后者的方法和能力上也可能存在差异。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验